The dinitramide salts of ammonia (ADN), hexamethylenetetramine (HDN), potassium (KDN), and sodium (NaDN) showed a linear relationship between the DSC rate of decomposition at the peak maximum and the DEA tan5 value at the low temperature transition peak. As the cation basicity increased in the series ADN < HDN < KDN
A process for N‐butyl‐N‐(2‐nitroxyethyl)nitramine (BuNENA) was investigated: Step 1 involves N‐butyl‐ethanolamine addition to 98% HNO3 to form a salt mixture; Step 2 is addition of acetic anhydride/acetyl chloride catalyst to the salt mixture. A number of potential intermediates, by‐products, and decomposition products from this process were identified/synthesized for use as analytical standards. BuNENA process reaction pathways/mechanisms were elucidated, including the nature of the amine salt solution formed in Step 1. In addition, potential pathways that could account for by‐product formation were elaborated. A study of the consumption of acetyl nitrate in Step 2 was undertaken to prevent its build‐up.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.