Being one of the most common trees in forests, Pinus sylvestris L. is a frequently used raw material for wood products. Its specific odour is, however, mostly unresolved to date. Accordingly, we investigated Scots pine wood samples grown in Germany for their main odorant composition. We employed dedicated odorant analysis techniques such as gas chromatography-olfactometry (GC-O) and aroma extract dilution analysis (AEDA) and successfully detected 44 odour-active compounds; of these, 39 substances were successfully identified by gas chromatography-mass spectrometry/olfactometry (GC-MS/O) and two-dimensional gas chromatography-mass spectrometry/olfactometry (2D-GC-MS/O). Among the main odorants found were (E,E)-nona-2,4-dienal, vanillin, phenylacetic acid, 3-phenylpropanoic acid, δ-octalactone and α-pinene, all of them having been detected with high flavour dilution factors during GC-O analyses. The majority of the identified odorants were fatty acid degradation products, plus some terpenoic substances and odorous substances resulting from the degradation of lignin. Although some of the detected substances have previously been reported as constituents of wood, 11 substances are reported here for the first time as odour-active compounds in wood, amongst them heptanoic acid, γ-octalactone, δ-nonalactone and (E,Z,Z)-trideca-2,4,7-trienal.
Due to its characteristic flavor and positive effects on human health, garlic is a highly valued food ingredient. Consumption of garlic alters the quality of body odors, which may in some instances hinder social interaction but be beneficial in other contexts, as it is assumed to contribute to early flavor learning in the breastfeeding context, for example. In previous work, allyl methyl sulfide (AMS) has been identified as the major odor-active metabolite in urine and milk, being excreted together with the odorless metabolites allyl methyl sulfoxide (AMSO) and allyl methyl sulfone (AMSO 2) after ingestion of raw garlic. The present work aimed to elucidate whether commonly used culinary thermal processing steps influence the excretion profiles of garlic-derived compounds. To this aim, urine (n = 6) and milk (n = 4) samples were donated before and after ingestion of roasted and cooked garlic and investigated by gas chromatography-olfactometry/mass spectrometry, and, in the case of milk, by aroma profile analysis. The concentrations of AMS, AMSO, and AMSO 2 were determined by stable isotope dilution assays. Sensory evaluations revealed that a garlic-like odor was perceivable in milk samples donated after ingestion of roasted and cooked garlic. Besides AMS, AMSO, and AMSO 2 , no other odor-active or odorless compounds related to the ingestion of roasted or cooked garlic were detected in the urine and milk samples. Maximum concentrations of the metabolites were detected around 1-2 h after garlic intake. In some cases, a second maximum occurred around 6 h after ingestion of garlic. The cooking procedure led to a more important reduction of metabolite concentrations than the roasting procedure. These findings suggest that intake of processed garlic leads to a transfer of odor-active and odorless metabolites into milk, which contributes to early flavor learning during breastfeeding and may also have a physiological effect on the infant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.