This paper presents a planning and execution architecture suited for the initial planning, the execution and the on-board repair of a plan for a multirobot mission. The team as a whole must accomplish its mission while dealing with online events such as robots breaking down, new objectives for the team, late actions and intermittent communications. We have chosen a "plan then repair" approach where an initial plan is computed offline and updated online whenever disruptive events happen. We have defined an hybrid planner that mixes Partial Order Planning (POP) with a Hierarchical Task Network (HTN)-based modelling of actions. This planner, called HiPOP for Hierarchical Partial-Order Planner, computes plans with temporal flexibility (thus easing its execution) and abstract actions (thus easing the repair process). It uses a symbolic representation of the world and has been extended with geometrical reasoning to adapt to multi-robots missions. Plans are executed in a distributed way: each robot is responsible of executing its own actions, and to propagate delays in its local plan, taking benefit from the temporal flexibility of the plan. When an inconsistency or a failure arises, a distributed repair algorithm based on HiPOP is used to repair the plan, by iteratively removing actions in the plan in order to amend the global plan. This repair is done onboard one of the robot of the team, and takes care of partial communication. The whole architecture has been evaluated through several benchmarks, statistical simulations, and field experiments involving 8 robots.
Field multi-robot missions face numerous unavoidable disturbances, such as delays in executing tasks and intermittent communications. Coping with such disturbances requires to endow the robots with high-level decision skills. We present a distributed decision architecture based first on a hybrid planner that can manage decentralized repairs with partial communication, and secondly on a distributed execution algorithm that efficiently propagates delays. This architecture has been successfully experimented on the field for the achievement of surveillance missions involving eight (8) real autonomous aerial and ground robots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.