The pace-of-life syndrome (POLS) hypothesis specifies that closely related species or populations experiencing different ecological conditions should differ in a suite of metabolic, hormonal and immunity traits that have coevolved with the life-history particularities related to these conditions. Surprisingly, two important dimensions of the POLS concept have been neglected: (i) despite increasing evidence for numerous connections between behavioural, physiological and life-history traits, behaviours have rarely been considered in the POLS yet; (ii) the POLS could easily be applied to the study of covariation among traits between individuals within a population. In this paper, we propose that consistent behavioural differences among individuals, or personality, covary with life history and physiological differences at the within-population, interpopulation and interspecific levels. We discuss how the POLS provides a heuristic framework in which personality studies can be integrated to address how variation in personality traits is maintained within populations.
Abstract. Pulsed systems are characterized by boom and bust cycles of resource production that are expected to cascade through multiple trophic levels. Many of the consumers within pulsed resource systems have specific adaptations to cope with these cycles that may serve to either amplify or dampen their community-wide consequences. We monitored a seed predator, the eastern chipmunk (Tamias striatus), in an American beech (Fagus grandifolia) dominated forest, and used capture-mark-recapture analyses to estimate chipmunk vital rates and relate them to interannual variation in beech seed production. The summer activity and reproduction of adults anticipated autumn beech production, with high activity and intense reproduction occurring in summers prior to beech masts. Chipmunks also reproduced every spring following a beech mast. However, adult survival was independent of beech production. In contrast, juvenile survival was lower in years of mast failure than in years of mast production, but their activity was consistently high and independent of beech production. Population growth was strongly affected by the number of juveniles and therefore by beech seed production, which explains nearly 70% of variation in population growth. Our results suggest that a combination of resource-dependent reproduction and variable activity levels associated with anticipation and response to resource pulses allows consumers to buffer potential deleterious effects of low food abundance on their survival.
SummaryAn increasing number of aging researchers believes that multi‐system physiological dysregulation may be a key biological mechanism of aging, but evidence of this has been sparse. Here, we used biomarker data on nearly 33 000 individuals from four large datasets to test for the presence of multi‐system dysregulation. We grouped 37 biomarkers into six a priori groupings representing physiological systems (lipids, immune, oxygen transport, liver function, vitamins, and electrolytes), then calculated dysregulation scores for each system in each individual using statistical distance. Correlations among dysregulation levels across systems were generally weak but significant. Comparison of these results to dysregulation in arbitrary ‘systems’ generated by random grouping of biomarkers showed that a priori knowledge effectively distinguished the true systems in which dysregulation proceeds most independently. In other words, correlations among dysregulation levels were higher using arbitrary systems, indicating that only a priori systems identified distinct dysregulation processes. Additionally, dysregulation of most systems increased with age and significantly predicted multiple health outcomes including mortality, frailty, diabetes, heart disease, and number of chronic diseases. The six systems differed in how well their dysregulation scores predicted health outcomes and age. These findings present the first unequivocal demonstration of integrated multi‐system physiological dysregulation during aging, demonstrating that physiological dysregulation proceeds neither as a single global process nor as a completely independent process in different systems, but rather as a set of system‐specific processes likely linked through weak feedback effects. These processes – probably many more than the six measured here – are implicated in aging.
Summary 1.As understanding of the energetic costs of reproduction in birds and mammals continues to improve, oxidative stress is an increasingly cited example of a non-energetic cost of reproduction that may serve as a proximal physiological link underlying life-history trade-offs. 2. Here, we provide the first study to measure daily energy expenditure (DEE) and oxidative damage in a wild population. We measured both traits on eastern chipmunks (Tamias striatus) and assessed their relationships with age, reproductive status, litter size and environmental conditions. 3. We found that both physiological traits were correlated with environmental characteristics (e.g. temperature, seasons). DEE tended to increase with decreasing temperature, while oxidative damage was lower in spring, after a winter of torpor expression, than in autumn. We also found that DEE decreased with age, while oxidative damage was elevated in young individuals, reduced in animals of intermediate age and tended to increase at older age. 4. After controlling for age and environmental variables, we found that both female DEE and oxidative damage increased with litter size, although the latter increased weakly. 5. Our results corroborate findings from laboratory studies but highlight the importance of considering environmental conditions, age and reproductive status in broader analyses of the causes and consequences of physiological costs of reproduction in wild animals.
Animal ecology research could benefit from the measurement of individual morphological traits. In bovids, male horn size often correlates with annual reproductive success, is sensitive to resource abundance, and could be a predictor of survival. However, live captures are costly, involve some risk of injury or substantial disturbance to the animals, and are impossible in many situations. To remotely measure horn growth of free‐ranging Alpine ibex (Capra ibex), I designed an aluminum frame that holds parallel laser pointers and a digital camera. I took digital pictures of ibex horns and calculated horn growth based on the fixed distance between the 2 laser points. This simple and accurate technique could benefit many ecological studies that require linear measurements, such as shoulder height, body length, leg length, or fin length. It could also help measure body features (e.g., fur or skin patterns, scars), increasing the reliability of individual photographic identification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.