Nucleotide incorporation and extension opposite N 2 -ethylGua by DNA polymerase was measured and structures of the DNA polymerase -N 2 -ethyl-Gua complex with incoming nucleotides were solved. Efficiency and fidelity of DNA polymerase opposite N 2 -ethyl-Gua was determined by steady state kinetic analysis with Mg 2؉ or Mn 2؉ as the activating metal. DNA polymerase incorporates dCMP opposite N 2 -ethyl-Gua and unadducted Gua with similar efficiencies in the presence of Mg 2؉ and with greater efficiencies in the presence of Mn 2؉ . However, the fidelity of nucleotide incorporation by DNA polymerase opposite N 2 -ethyl-Gua and Gua using Mn 2؉ is lower relative to that using Mg 2؉ indicating a metal-dependent effect. DNA polymerase extends from the N 2 -ethyl-Gua:Cyt 3 terminus more efficiently than from the Gua:Cyt base pair. Together these kinetic data indicate that the DNA polymerase catalyzed reaction is well suited for N 2 -ethyl-Gua bypass. The structure of DNA polymerase with N 2 -ethyl-Gua at the active site reveals the adducted base in the syn configuration when the correct incoming nucleotide is present. Positioning of the ethyl adduct into the major groove removes potential steric overlap between the adducted template base and the incoming dCTP. Comparing structures of DNA polymerase complexed with N 2 -ethyl-Gua and Gua at the active site suggests movements in the DNA polymerase polymerase-associated domain to accommodate the adduct providing direct evidence that DNA polymerase efficiently replicates past a minor groove DNA adduct by positioning the adducted base in the syn configuration.2 is an acetaldehyde-derived DNA adduct generated from the reduction of acetaldehyde with 2Ј-deoxyguanosine-3Ј-monophosphate (1). Humans are exposed to acetaldehyde from the environment and through the formation of acetaldehyde by the oxidation of ethanol (2). N 2 -Ethyl-Gua has been detected in the DNA of both alcoholic and nonalcohol drinkers (2, 3). Ethanol is classified as a human carcinogen, and acetaldehyde is known to contribute to the formation of malignant tumors (4). The formation of N 2 -ethylGua during the reduction of acetaldehyde could cause ethanolrelated cancers (5).The ethyl moiety of N 2 -ethyl-Gua is predicted to project into the minor groove of duplex DNA. The N 2 -ethyl-Gua adduct is a strong block to DNA replication by replicative DNA polymerases in vitro and in cells (6, 7). Structures of bacteriophage DNA polymerase (pol) RB69, a homolog of human DNA pol ␣, indicate a possible mechanism of N 2 -ethyl-Gua blocked DNA replication. The structures reveal a DNA-binding motif that contacts the DNA minor groove and functions as an important safeguard to replication fidelity (8). The blocking of replicative DNA pols by N 2 -ethyl-Gua could arise when the ethyl group, protruding into the minor groove, disrupts protein:DNA contacts involved in the proposed "checking mechanism" (8). N 2 -Ethyl-Gua also has a high mis-coding potential during DNA replication with the Klenow fragment of Escherichia coli DNA po...
The effects of N(2)-ethylGua, O(6)-ethylGua, and O(6)-methylGua adducts in template DNA on polymerization by mammalian DNA polymerases alpha and eta have been investigated. The N(2)-ethylGua adduct blocks polymerization by the replicative DNA polymerase alpha to a much greater extent than does the O(6)-ethyl- or the O(6)-methylGua adducts. The DNA polymerase eta efficiently and accurately bypasses the N(2)-ethylGua lesion but like DNA polymerase alpha is similarly blocked by the O(6)-ethyl- or the O(6)-methylGua adducts. A steady state kinetic analysis of nucleotide insertion opposite the N(2)-ethylGua and the O(6)-ethylGua adducts by the DNA polymerases alpha and eta and extension from 3'-termini positioned opposite these adducts was performed to measure the efficiency and the accuracy of DNA synthesis past these lesions. This analysis showed that insertion of Cyt opposite the N(2)-ethylGua adduct by DNA polymerase alpha is approximately 10(4)-fold less efficient than insertion of Cyt opposite an unadducted Gua residue at the same position. Extension from the N(2)-ethylGua:Cyt 3'-terminus by DNA polymerase alpha is approximately 10(3)-fold less efficient than extension from a Cyt opposite the unadducted Gua. Insertion of Cyt opposite the N(2)-ethylGua lesion by the DNA polymerase eta is about 370-fold more efficient than by the DNA polymerase alpha, and extension from the N(2)-ethylGua:Cyt 3'-terminus by the DNA polymerase eta is about 3-fold more efficient than by the DNA polymerase alpha. Furthermore, the DNA polymerase eta preferably inserts the correct nucleotide Cyt opposite the N(2)-ethylGua lesion with nearly the same level of accuracy as opposite an unadducted Gua, thus minimizing the mutagentic potential of this lesion. This result contrasts with the relatively high misincorporation efficiency of Thy opposite the O(6)-ethylGua adduct by the DNA polymerases alpha and eta. In reactions containing both DNA polymerases alpha and eta, synthesis past the N(2)-ethylGua adduct is detected to permit completed replication of the adducted oligonucleotide template. These results suggest that accurate replication past the N(2)-ethylGua adduct might be facilitated in cells by pausing of replication catalyzed by DNA polymerase alpha and lesion bypass catalyzed by DNA polymerase eta.
The 1-propanediazonium ion, generated from N'-nitro-N-nitroso-N-propylguanidine in aqueous solutions, was reacted with the purine nucleosides dGuo and dAdo or single-stranded or double-stranded DNA. After nucleobase liberation by acid hydrolysis, the percent yields of products were determined by LC/MS using either isotopically distinct internal standards in the case of the nucleoside reactions or an internal standard and the ratios of response factors of all other products that were separately determined in the case of the reactions with DNA. In the reactions of nucleosides, products of both n-propylation and iso-propylation at all of the heroatoms were observed. For these reactions, the yields of the three most abundant n-propyl adducts of Gua are in the order O6 > N7 > N2, in the ratio of 9.0/6.4/1, while for Ade, the order of the yields of N-propyl products is N1 > N7 > N3 > N6 in the ratio 2.5/1.8/1.1/1. The ratios of n-propylated to iso-propylated products at each site, P(n)/P(i), generally a measure of enhancement of S(N)2 displacement on the diazonium ion, vary with each heteroatom but by no more than a factor of 6 for Gua and a factor of 3 for Ade. In the reactions with duplex DNA, products of reactions at all sites could not be detected. In addition, much larger selectivities are observed, similar to what has been observed by others in the reactions with ethanediazonium ion. Thus, P(n)/P(i) = 30, 21, and 0.9 for N7, O6, and N2 of Gua. Similarly, the values of P(n)/P(i) are 11 and 8 for N3 and N7 of Ade. Reactions with single-stranded DNA give values of P(n)/P(i) that are intermediate between the nucleoside reactions and the reactions of duplex DNA in most cases. The factors responsible for the relatively small atom site selectivities intrinsic to the nucleosides are analyzed, and reasons for enhanced S(N)2 nucleophilicity in duplex DNA are discussed.
Reactions have been carried out in which 1,3-diisopropyltriazene or N-isopropyl-N-(1-hydroxyethyl)nitrosamine has been decomposed in neutral, buffered aqueous media in the presence of (15N2)2'-deoxyguanosine and (15N6)2'-deoxyadenosine. The products of covalent attachment of the isopropyl cation, derived from the isopropyl diazonium ion, to the heteroatoms of the purines have been separated and quantified by HPLC/electrospray mass spectrometry by employing isotopically distinct synthetic standards. The results indicate that the two different precursors of the isopropyl cation result in the formation of different yields of products in the reactions at all of the heteroatoms of both purines, outside experimental error, except possibly in the case of the N3 position of dAdo. For the different alkylating agents, the ratios of yields at any two sites vary as well. This leads to the conclusion that isopropylation occurs by a preassociation mechanism in which the isopropyl cation intermediate reacts in the solvation shell in which it is generated from its precursors. The reaction of N-isopropyl-N-(1-hydroxyethyl)nitrosamine results in alkylation of 2'-deoxyguanosine in preference to 2-deoxyadenosine, by a factor of 3-4. In this reaction, the yields for reaction at N1, N3, N6, and N7 of adenine vary over less than a factor of 2, whereas the yields for N2, N3, O6, and N7 of guanine vary over less than a factor of 4. The N1 atom of guanine is disfavored over the major product, the O6 adduct, by a factor of <8. The reaction of 1,3-diisopropyltriazene shows a similar preference for alkylation of 2-deoxyguanosine, with a similar range of product distribution in the reactions at adenine heteroatoms and a somewhat larger range of distribution at guanine heteroatoms. In particular, the yield of 1-isopropylguanosine is 50-fold lower than that of O6-isopropylguanosine. The comparable yields of products of reaction at the "hard" and "soft" sites of the purines lead to the conclusion that nucleophilicity is unimportant in site selectivity of alkylation by the isopropyl cation. The noteworthy selectivities, above, are rationalized by: differences in the association constants of the precursors of the cations with the two nucleosides; steric, statistical, and electrostatic effects that favor reaction of the O6 atom of guanine; and larger steric and/or desolvation requirements for association of the 1,3-diisopropyltriazenium cation with the N1 atom of guanine. The reaction of N-isopropyl-N-(1-hydroxyethyl)nitrosamine with double-stranded DNA has been similarly analyzed. The product distribution is remarkably similar in profile to that observed for the nucleosides in solution. In particular, exocyclic amino groups are competitive with the more traditional sites of diazonium ion-mediated alkylation. A comparison to earlier literature data on alkylation by methyl- and ethyl-diazonium ions illustrates some fundamental differences between the reaction of the diazonium ions and the isopropyl cation derived from the isopropyl diazonium ion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.