When retrospective revaluation phenomena (e.g., unovershadowing: AB+, then A-, then test B) were discovered, simple elemental models were at a disadvantage because they could not explain such phenomena. Extensions of these models and novel models appealed to within-compound associations to accommodate these new data. Here, we present an elemental, neural network model of conditioning that explains retrospective revaluation apart from within-compound associations. In the model, previously paired stimuli (say, A and B, after AB+) come to activate similar ensembles of neurons, so that revaluation of one stimulus (A-) has the opposite effect on the other stimulus (B) through changes (decreases) in the strength of the inhibitory connections between neurons activated by B. The ventral striatum is discussed as a possible home for the structure and function of the present model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.