Intracellular targets of the ubiquitous second messenger cAMP are located at great distances from the most widely studied source of cAMP, the G protein responsive transmembrane adenylyl cyclases. We previously identified an alternative source of cAMP in mammalian cells lacking transmembrane spanning domains, the "soluble" adenylyl cyclase (sAC). We now demonstrate that sAC is distributed in specific subcellular compartments: mitochondria, centrioles, mitotic spindles, mid-bodies, and nuclei, all of which contain cAMP targets. Distribution at these intracellular sites proves that adenylyl cyclases are in close proximity to all cAMP effectors, suggesting a model in which local concentrations of cAMP are regulated by individual adenylyl cyclases targeted to specific microdomains throughout the cell.
Diabetes is a common comorbidity in stroke patients and a strong predictor of poor functional outcome. To provide a more mechanistic understanding of this clinically relevant problem, we focused on how diabetes affects blood-brain barrier (BBB) function after stroke. Because the BBB can be compromised for days after stroke and thus further exacerbate ischemic injury, manipulating its function presents a unique opportunity for enhancing stroke recovery long after the window for thrombolytics has passed. Using a mouse model of Type 1 diabetes, we discovered that ischemic stroke leads to an abnormal and persistent increase in vascular endothelial growth factor receptor 2 (VEGF-R2) expression in peri-infarct vascular networks. Correlating with this, BBB permeability was markedly increased in diabetic mice, which could not be prevented with insulin treatment after stroke. Imaging of capillary ultrastructure revealed that BBB permeability was associated with an increase in endothelial transcytosis rather than a loss of tight junctions. Pharmacological inhibition (initiated 2.5 d after stroke) or vascular-specific knockdown of VEGF-R2 after stroke attenuated BBB permeability, loss of synaptic structure in peri-infarct regions, and improved recovery of forepaw function. However, the beneficial effects of VEGF-R2 inhibition on stroke recovery were restricted to diabetic mice and appeared to worsen BBB permeability in nondiabetic mice. Collectively, these results suggest that aberrant VEGF signaling and BBB dysfunction after stroke plays a crucial role in limiting functional recovery in an experimental model of diabetes. Furthermore, our data highlight the need to develop more personalized stroke treatments for a heterogeneous clinical population.
Following ischemia, the blood-brain barrier is compromised in the peri-infarct zone leading to secondary injury and dysfunction that can limit recovery. Currently, it is uncertain what structural changes could account for blood-brain barrier permeability, particularly with aging. Here we examined the ultrastructure of early and delayed changes (3 versus 72 h) to the blood-brain barrier in young adult and aged mice (3-4 versus 18 months) subjected to photothrombotic stroke. At both time points and ages, permeability was associated with a striking increase in endothelial caveolae and vacuoles. Tight junctions were generally intact although small spaces were detected in a few cases. In young mice, ischemia led to a significant increase in pericyte process area and vessel coverage whereas these changes were attenuated with aging. Stroke led to an expansion of the basement membrane region that peaked at 3 h and partially recovered by 72 h in both age groups. Astrocyte endfeet and their mitochondria were severely swollen at both times points and ages. Our results suggest that blood-brain barrier permeability in young and aged animals is mediated by transcellular pathways (caveolae/vacuoles), rather than tight junction loss. Further, our data indicate that the effects of ischemia on pericytes and basement membrane are affected by aging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.