The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Some electromagnetic materials present, in a given frequency range, an effective dielectric permittivity and/or magnetic permeability which are negative. We are interested in the reunion of such a "negative" material and a classical one. More precisely, we consider here a scalar model problem for the simulation of a wave transmission between two such materials. This model is governed by a Helmholtz equation with a weight function in the ∆ principal part which takes positive and negative real values. Introducing additional unknowns, we have already proposed in [2] some new variational formulations of this problem, which are of Fredholm type provided the absolute value of the contrast of permittivities is large enough, and therefore suitable for a finite element discretization. We prove here that, under similar conditions on the contrast, the natural variational formulation of the problem, although not "coercive plus compact", is nonetheless suitable for a finite element discretization. This leads to a numerical approach which is straightforward, less costly than the previous ones, and very accurate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.