A standardized descriptive language for Cheddar cheese flavor was developed and validated. Representative Cheddar cheeses (240) were collected. Fifteen individuals from industry, academia, and government participated in a 3-d roundtable discussion to generate descriptive flavor terms. A highly trained descriptive panel (n = 11) refined the terms and identified references. Cheddar cheeses (24) were presented to the panel for validation with the identified lexicon. The panel differentiated the 24 Cheddar cheeses as determined by univariate and multivariate analysis of variance (P < 0.05). Twenty-seven terms were identified to describe Cheddar flavor. Seventeen descriptive terms were present in most Cheddar cheeses. A standard sensory language for Cheddar cheese will facilitate training and communication between different research groups.
Chitosan is a biopolymer that exhibits osteoconductive, enhanced wound healing and antimicrobial properties which make it attractive for use as a bioactive coating to improve osseointegration of orthopaedic and craniofacial implant devices. Coatings made from 91.2% de-acetylated chitosan were chemically bonded to titanium coupons via silane-glutaraldehyde molecules. The bond strength of the coatings was evaluated in mechanical tensile tests, and their dissolution and cytocompatibility were evaluated in vitro using cell-culture medium and UMR 106 osteoblastic cells, respectively. The results showed that the chitosan coatings were chemically bonded to the titanium substrate and that the bond strengths (1.5-1.8 MPa) were not affected by gas sterilization. However, the chitosan bond strengths were less than those reported for calcium-phosphate coatings. The gas-sterilized coatings exhibited little dissolution over 8 weeks in cell-culture solution, and the attachment and growth of the UMR 106 osteoblast cells was greater on the chitosan-coated samples than on the uncoated titanium. These results indicated that chitosan has the potential to be used as a biocompatible, bioactive coating for orthopaedic and craniofacial implant devices.
Characterization of forest attributes at fine scales is necessary to manage terrestrial resources in a manner that replicates, as closely as possible, natural ecological conditions. In forested ecosystems, management decisions are driven by variables such as forest composition, forest structure (both vertical and horizontal), and other ancillary data (i.e., topography, soils, slope, aspect, and disturbance regime dynamics). Vertical forest structure is difficult to quantify and yet is an important component in the decision-making process. This study investigated the use of light detection and ranging (LiDAR) data for classifying this attribute at landscape scales for inclusion into decisionsupport systems. Analysis of field-derived tree height variance demonstrated that this metric could distinguish between two classes of vertical forest structure. Analysis of LiDAR-derived tree height variance demonstrated that differences between single-story and multistory vertical structural classes could be detected. Landscape-scale classification of the two structure classes was 97% accurate. This study suggested that within forest types of the Intermountain West region of the United States, LiDAR-derived tree heights could be useful in the detection of differences in the continuous, nonthematic nature of vertical forest structure with acceptable accuracies. D
In order to study the effect of the α, β crystalline structure of polypropylene (PP) on its mechanical properties, it is necessary to prepare samples with variable α/β-phase content but with constant crystallinity and constant spherulite size. With this objective, heat treatment was first defined to be applied to an isotactic PP containing a β nucleating agent in order to achieve these conditions. Then study of the effect of the β-phase content on the tensile properties and fracture behaviour has been done at room temperature. The mechanical properties at fracture were assessed by three-point bending tests and were analysed on the basis of the "Essential Work of Fracture" (EWF). The results show that the elongation at fracture under tensile stress and the "near" Plane-Strain Essential Work of Fracture, w Ie, increase substantially with the β-phase content. Besides, Young's modulus and the yield stress in tensile tests decrease slowly with the β-phase content. Finally, these results are analysed taking account the differences in structure of the α and β spherulites.
Summary Climate change could increase the frequency with which plants experience abiotic stresses, leading to changes in their metabolic pathways. These stresses may induce the production of compounds that are structurally and biologically different from constitutive compounds. We studied how warming and altered precipitation affected the composition, structure, and biological reactivity of leaf litter tannins in Acer rubrum at the Boston‐Area Climate Experiment, in Massachusetts, USA. Warmer and drier climatic conditions led to higher concentrations of protective compounds, including flavonoids and cutin. The abundance and structure of leaf tannins also responded consistently to climatic treatments. Drought and warming in combination doubled the concentration of total tannins, which reached 30% of leaf‐litter DW. This treatment also produced condensed tannins with lower polymerization and a greater proportion of procyanidin units, which in turn reduced sequestration of tannins by litter fiber. Furthermore, because of the structural flexibility of these tannins, litter from this treatment exhibited five times more enzyme (β‐glucosidase) complexation capacity on a per‐weight basis. Warmer and wetter conditions decreased the amount of foliar condensed tannins. Our finding that warming and drought result in the production of highly reactive tannins is novel, and highly relevant to climate change research as these tannins, by immobilizing microbial enzymes, could slow litter decomposition and thus carbon and nutrient cycling in a warmer, drier world.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.