RNA is known to be an abundant and important structural component of the nuclear matrix, including long noncoding RNAs (lncRNA). Yet the molecular identities, functional roles, and localization dynamics of lncRNAs that influence nuclear architecture remain poorly understood. Here, we describe one lncRNA, Firre, that interacts with the nuclear matrix factor hnRNPU, through a 156 bp repeating sequence and Firre localizes across a ~5 Mb domain on the X-chromosome. We further observed Firre localization across at least five distinct trans-chromosomal loci, which reside in spatial proximity to the Firre genomic locus on the X-chromosome. Both genetic deletion of the Firre locus or knockdown of hnRNPU resulted in loss of co-localization of these trans-chromosomal interacting loci. Thus, our data suggest a model in which lncRNAs such as Firre can interface with and modulate nuclear architecture across chromosomes.
BackgroundLong non-coding RNAs (lncRNAs) have been implicated in diverse biological processes. In contrast to extensive genomic annotation of lncRNA transcripts, far fewer have been characterized for subcellular localization and cell-to-cell variability. Addressing this requires systematic, direct visualization of lncRNAs in single cells at single-molecule resolution.ResultsWe use single-molecule RNA-FISH to systematically quantify and categorize the subcellular localization patterns of a representative set of 61 lncRNAs in three different cell types. Our survey yields high-resolution quantification and stringent validation of the number and spatial positions of these lncRNA, with an mRNA set for comparison. Using this highly quantitative image-based dataset, we observe a variety of subcellular localization patterns, ranging from bright sub-nuclear foci to almost exclusively cytoplasmic localization. We also find that the low abundance of lncRNAs observed from cell population measurements cannot be explained by high expression in a small subset of ‘jackpot’ cells. Additionally, nuclear lncRNA foci dissolve during mitosis and become widely dispersed, suggesting these lncRNAs are not mitotic bookmarking factors. Moreover, we see that divergently transcribed lncRNAs do not always correlate with their cognate mRNA, nor do they have a characteristic localization pattern.ConclusionsOur systematic, high-resolution survey of lncRNA localization reveals aspects of lncRNAs that are similar to mRNAs, such as cell-to-cell variability, but also several distinct properties. These characteristics may correspond to particular functional roles. Our study also provides a quantitative description of lncRNAs at the single-cell level and a universally applicable framework for future study and validation of lncRNAs.Electronic supplementary materialThe online version of this article (doi:10.1186/s13059-015-0586-4) contains supplementary material, which is available to authorized users.
Self-assembled monolayer (SAM) structures and properties are dominated by two interactions: those between the substrate and adsorbate and those between the adsorbates themselves. We have fabricated self-assembled monolayers of m-1-carboranethiol (M1) and m-9-carboranethiol (M9) on Au[111]. The two isomers are nearly identical geometrically, but calculated molecular dipole moments show a sizable difference at 1.06 and 4.08 D for M1 and M9 in the gas phase, respectively. These molecules provide an opportunity to investigate the effect of different dipole moments within SAMs without altering the geometry of the assembly. Pure and co-deposited SAMs of these molecules were studied by scanning tunneling microscopy (STM). The molecules are indistinguishable in STM images, and the hexagonally close-packed adlayer structures were found to have ((square root of 19) x (square root of 19))R23.4 degrees unit cells. Both SAMs display rotational domains without the protruding or depressed features in STM images associated with domain boundaries in other SAM systems. Differing orientations of molecular dipole moments influence SAM properties, including the stability of the SAM and the coverage of the carboranethiolate in competitive binding conditions. These properties were investigated by dynamic contact angle goniometry, Kelvin probe force microscopy, and grazing incidence Fourier transform infrared spectroscopy.
We report the facile fabrication of high-quality, robust alkanethiolate self-assembled monolayers (SAMs) on germanium substrates. Our approach to produce SAMs on technologically important substrates takes advantage of the many strategies previously developed for gold-thiol self-assembly. Direct self-assembly of alkanethiols on germanium is impeded by the presence of the native germanium oxide. Using a mixture of water and ethanol, we create an environment where both adsorbate and oxide are sufficiently soluble to enable SAM deposition in a single step. By manipulating reaction conditions, monolayers form spontaneously on untreated germanium, which opens new avenues for the exploitation of self-assembly on semiconductor surfaces. While our analyses initially focused on 1-dodecanethiol on Ge(100), this method is robust and we have extended its use to include a range of adsorbates on Ge(100) as well as to the Ge(111) and Ge(110) substrates.
Mesenchymal stem cells (MSCs) display substantial cell-to-cell heterogeneity, complicating their use in regenerative medicine. However, conventional bulk assays mask this variability. Here we show that both chondrocytes and chondrogenically induced MSCs exhibit substantial mRNA expression heterogeneity. Single-molecule RNA FISH to measure mRNA expression of differentiation markers in single cells reveals that sister cell pairs have high levels of mRNA variability, suggesting that marker expression is not heritable. Surprisingly, this variability does not correlate with cell-to-cell differences in cartilage-like matrix production. Transcriptome-wide analysis suggests that no combination of markers can predict functional potential. De-differentiating chondrocytes also show a disconnect between mRNA expression of the cartilage marker aggrecan and cartilage-like matrix accumulation. Altogether, these quantitative analyses suggest that sorting subpopulations based on these markers would only marginally enrich the progenitor population for ‘superior' MSCs. Our results suggest that instantaneous mRNA abundance of canonical markers is tenuously linked to the chondrogenic phenotype at the single-cell level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.