The ability to produce polysaccharides with diverse biological functions is widespread in bacteria. In lactic acid bacteria (LAB), production of polysaccharides has long been associated with the technological, functional and health-promoting benefits of these microorganisms. In particular, the capsular polysaccharides and exopolysaccharides have been implicated in modulation of the rheological properties of fermented products. For this reason, screening and selection of exocellular polysaccharide-producing LAB has been extensively carried out by academia and industry. To further exploit the ability of LAB to produce polysaccharides, an in-depth understanding of their biochemistry, genetics, biosynthetic pathways, regulation and structure-function relationships is mandatory. Here, we provide a critical overview of the latest advances in the field of glycosciences in LAB. Surprisingly, the understanding of the molecular processes involved in polysaccharide synthesis is lagging behind, and has not accompanied the increasing commercial value and application potential of these polymers. Seizing the natural diversity of polysaccharides for exciting new applications will require a concerted effort encompassing in-depth physiological characterization of LAB at the systems level. Combining high-throughput experimentation with computational approaches, biochemical and structural characterization of the polysaccharides and understanding of the structure-function-application relationships is essential to achieve this ambitious goal.
Bacillus spp. are commonly used as probiotic species in the feed industry, however, their benefits need to be confirmed. This study describes a high throughput screening combined with the detailed characterization of endospore-forming bacteria with the aim to identify new Bacillus spp. strains for use as probiotic additives in pig feed. A total of 245 bacterial isolates derived from African fermented food, feces and soil were identified by 16S rRNA gene sequencing and screened for antimicrobial activity and growth in the presence of antibiotics, bile salts and at pH 4.0. Thirty-three Bacillus spp. isolates with the best characteristics were identified by gyrB and rpoB gene sequencing as B. amyloliquefaciens subsp. plantarum, B. amyloliquefaciens subsp. amyloliquefaciens, B. subtilis subsp. subtilis, B. licheniformis, B. mojavensis, B. pumilus and B. megaterium. These isolates were further investigated for their activity against the pathogenic bacteria, antibiotic susceptibility, sporulation rates, biofilm formation and production of glycosyl hydrolytic enzymes. Additionally, ten selected isolates were assessed for heat resistance of spores and the effect on porcine epithelial cells IPEC-J2. Isolates of B. amyloliquefaciens, B. subtilis and B. mojavensis, showed the best overall characteristics and, therefore, potential for usage as probiotic additives in feed. A large number of taxonomically diverse strains made it possible to reveal species and subspecies-specific trends, contributing to our understanding of the probiotic potential of Bacillus species.
cBacillus spp. are widely used as feed additives and probiotics. However, there is limited information on their resistance to various antibiotics, and there is a growing concern over the transfer of antibiotic resistance genes. The MIC for 8 antibiotics was determined for 85 Bacillus species strains, Bacillus subtilis subsp. subtilis (n ؍ 29), Bacillus licheniformis (n ؍ 38), and Bacillus sonorensis (n ؍ 18), all of which were isolated from starters for Sudanese bread production. All the strains were sensitive to tetracycline (
The food industry is constantly striving to develop new products to fulfil the ever changing demands of consumers and the strict requirements of regulatory agencies. For foods based on microbial fermentation, this pushes the boundaries of microbial performance and requires the constant development of new starter cultures with novel properties. Since the use of ingredients in the food industry is tightly regulated and under close scrutiny by consumers, the use of recombinant DNA technology to improve microbial performance is currently not an option. As a result, the focus for improving strains for microbial fermentation is on classical strain improvement methods. Here we review the use of these techniques to improve the functionality of lactic acid bacteria starter cultures for application in industrial-scale food production. Methods will be described for improving the bacteriophage resistance of specific strains, improving their texture forming ability, increasing their tolerance to stress and modulating both the amount and identity of acids produced during fermentation. In addition, approaches to eliminating undesirable properties will be described. Techniques include random mutagenesis, directed evolution and dominant selection schemes.
The increased use of food cultures to ferment perishable raw materials has potentiated the need for regulations to assess and assure the safety of food cultures and their uses. These regulations differ from country to country, all aimed at assuring the safe use of food cultures which has to be guaranteed by the food culture supplier. Here we highlight national differences in regulations and review a list of methods and methodologies to assess the safety of food cultures at strain level, at production, and in the final product.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.