Plants have significantly more transcription factor (TF) families than animals and fungi, and plant TF families tend to contain more genes; these expansions are linked to adaptation to environmental stressors. Many TF family members bind to similar or identical sequence motifs, such as G-boxes (CACGTG), so it is difficult to predict regulatory relationships. We determined that the flanking sequences near G-boxes help determine in vitro specificity but that this is insufficient to predict the transcription pattern of genes near G-boxes. Therefore, we constructed a gene regulatory network that identifies the set of bZIPs and bHLHs that are most predictive of the expression of genes downstream of perfect G-boxes. This network accurately predicts transcriptional patterns and reconstructs known regulatory subnetworks. Finally, we present Ara-BOX-cis (araboxcis.org), a Web site that provides interactive visualizations of the G-box regulatory network, a useful resource for generating predictions for gene regulatory relations.
SummaryTemperature is a key environmental variable influencing plant growth and survival. Protection against high temperature stress in eukaryotes is coordinated by heat shock factors (HSFs), transcription factors that activate the expression of protective chaperones such as HEAT SHOCK PROTEIN 70 (HSP70); however, the pathway by which temperature is sensed and integrated with other environmental signals into adaptive responses is not well understood. Plants are exposed to considerable diurnal variation in temperature, and we have found that there is diurnal variation in thermotolerance in Arabidopsis thaliana, with maximal thermotolerance coinciding with higher HSP70 expression during the day. In a forward genetic screen, we identified a key role for the chloroplast in controlling this response, suggesting that light-induced chloroplast signaling plays a key role. Consistent with this, we are able to globally activate binding of HSFA1a to its targets by altering redox status in planta independently of a heat shock.
Binary expression systems like the LexA-LexAop system provide a powerful experimental tool kit to study gene and tissue function in developmental biology, neurobiology, and physiology. However, the number of well-defined LexA enhancer trap insertions remains limited. In this study, we present the molecular characterization and initial tissue expression analysis of nearly 100 novel StanEx LexA enhancer traps, derived from the StanEx 1 index line. This includes 76 insertions into novel, distinct gene loci not previously associated with enhancer traps or targeted LexA constructs. Additionally, our studies revealed evidence for selective transposase-dependent replacement of a previously-undetected KP element on chromosome III within the StanEx 1 genetic background during hybrid dysgenesis, suggesting a molecular basis for the over-representation of LexA insertions at the NK7.1 locus in our screen. Production and characterization of novel fly lines were performed by students and teachers in experiment-based genetics classes within a geographically diverse network of public and independent high schools. Thus, unique partnerships between secondary schools and university-based programs have produced and characterized novel genetic and molecular resources in Drosophila for open-source distribution, and provide paradigms for development of science education through experience-based pedagogy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.