Aperiodic sinusoidal patterns that are cast by a GOBO (GOes Before Optics) projector are a powerful tool for optically measuring the surface topography of moving or deforming objects with very high speed and accuracy. We optimised the first experimental setup that we were able to measure inflating car airbags at frame rates of more than 50 kHz while achieving a 3D point standard deviation of ~500 µm. Here, we theoretically investigate the method of GOBO projection of aperiodic sinusoidal fringes. In a simulation-based performance analysis, we examine the parameters that influence the accuracy of the measurement result and identify an optimal pattern design that yields the highest measurement accuracy. We compare the results with those that were obtained via GOBO projection of phase-shifted sinusoidal fringes. Finally, we experimentally verify the theoretical findings. We show that the proposed technique has several advantages over conventional fringe projection techniques, as the easy-to-build and cost-effective GOBO projector can provide a high radiant flux, allows high frame rates, and can be used over a wide spectral range.
Pattern projection-based 3D measurement systems are widely used for contactless, non-destructive optical 3D shape measurements. In addition, many robot-operated automation tasks require real-time reconstruction of accurate 3D data. In previous works, we have demonstrated 3D scanning based on statistical pattern projection-aided stereo matching between two cameras. One major advantage of this technology is that the actually projected patterns do not have to be known a priori in the reconstruction software. This allows much simpler projector designs and enables high-speed projection. However, to find corresponding pixels between cameras, it is necessary to search the best match amongst all pixels within the geometrically possible image area (that is, within a range on the corresponding epipolar line). The well-established method for this search is to compare each candidate pixel by temporal normalized cross correlation of the brightness value sequences of both pixels. This is computationally expensive and interdicts fast real-time applications on inexpensive computer hardware. We show two variants of our algorithm “Binary Correspondence Search” (BICOS), which solve this task in significantly reduced calculation time. In practice, our algorithm is much faster than traditional, purely cross-correlation-based search while maintaining a similar level of accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.