Diacylglycerol (DAG) lipase activity is required for axonal growth during development and for retrograde synaptic signaling at mature synapses. This enzyme synthesizes the endocannabinoid 2-arachidonoyl-glycerol (2-AG), and the CB1 cannabinoid receptor is also required for the above responses. We now report on the cloning and enzymatic characterization of the first specific sn-1 DAG lipases. Two closely related genes have been identified and their expression in cells correlated with 2-AG biosynthesis and release. The expression of both enzymes changes from axonal tracts in the embryo to dendritic fields in the adult, and this correlates with the developmental change in requirement for 2-AG synthesis from the pre- to the postsynaptic compartment. This switch provides a possible explanation for a fundamental change in endocannabinoid function during brain development. Identification of these enzymes may offer new therapeutic opportunities for a wide range of disorders.
Endocannabinoids (eCBs) function as retrograde signaling molecules at synapses throughout the brain, regulate axonal growth and guidance during development, and drive adult neurogenesis. There remains a lack of genetic evidence as to the identity of the enzyme(s) responsible for the synthesis of eCBs in the brain. Diacylglycerol lipase-␣ (DAGL␣) and - (DAGL) synthesize 2-arachidonoyl-glycerol (2-AG), the most abundant eCB in the brain. However, their respective contribution to this and to eCB signaling has not been tested. In the present study, we show ϳ80% reductions in 2-AG levels in the brain and spinal cord in DAGL␣ Ϫ/Ϫ mice and a 50% reduction in the brain in DAGL Ϫ/Ϫ mice. In contrast, DAGL plays a more important role than DAGL␣ in regulating 2-AG levels in the liver, with a 90% reduction seen in DAGL Ϫ/Ϫ mice. Levels of arachidonic acid decrease in parallel with 2-AG, suggesting that DAGL activity controls the steady-state levels of both lipids. In the hippocampus, the postsynaptic release of an eCB results in the transient suppression of GABAmediated transmission at inhibitory synapses; we now show that this form of synaptic plasticity is completely lost in DAGL␣ Ϫ/Ϫ animals and relatively unaffected in DAGL Ϫ/Ϫ animals. Finally, we show that the control of adult neurogenesis in the hippocampus and subventricular zone is compromised in the DAGL␣ Ϫ/Ϫ and/or DAGL Ϫ/Ϫ mice. These findings provide the first evidence that DAGL␣ is the major biosynthetic enzyme for 2-AG in the nervous system and reveal an essential role for this enzyme in regulating retrograde synaptic plasticity and adult neurogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.