The introduction of three-dimensional printing (3DP) has created exciting possibilities for the fabrication of dosage forms, paving the way for personalized medicine. In this study, oral dosage forms of two drug concentrations, namely 2.50% and 5.00%, were fabricated via stereolithography (SLA) using a novel photopolymerizable resin formulation based on a monomer mixture that, to date, has not been reported in the literature, with paracetamol and aspirin selected as model drugs. In order to produce the dosage forms, the ratio of poly(ethylene glycol) diacrylate (PEGDA) to poly(caprolactone) triol was varied with diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (Irgacure TPO) utilized as the photoinitiator. The fabrication of 28 dosages in one print process was possible and the printed dosage forms were characterized for their drug release properties. It was established that both drugs displayed a sustained release over a 24-h period. The physical properties were also investigated, illustrating that SLA affords accurate printing of dosages with some statistically significant differences observed from the targeted dimensional range, indicating an area for future process improvement. The work presented in this paper demonstrates that SLA has the ability to produce small, individualized batches which may be tailored to meet patients’ specific needs or provide for the localized production of pharmaceutical dosage forms.
Biodegradable polymers play a crucial role in the medical device field, with a broad range of applications such as suturing, drug delivery, tissue engineering, scaffolding, orthopaedics, and fixation devices. Poly-l-lactic acid (PLLA) is one of the most commonly used and investigated biodegradable polymers. The objective of this study was to determine the influence low shear microbore extrusion exerts on the properties of high molecular weight PLLA for medical tubing applications. Results showed that even at low shear rates there was a considerable reduction in molecular weight (Mn = 7–18%) during processing, with a further loss (Mn 11%) associated with resin drying. An increase in melt residence time from ~4 mins to ~6 mins, translated into a 12% greater reduction in molecular weight. The degradation mechanism was determined to be thermal and resulted in a ~22-fold increase in residual monomer. The differences in molecular weight between both batches had no effect on the materials thermal or morphological properties. However, it did affect its mechanical properties, with a significant impact on tensile strength and modulus. Interestingly there was no effect on the elongational proprieties of the tubing. There was also an observed temperature-dependence of mechanical properties below the glass transition temperature.
Poly-l-lactic acid (PLLA) is one of the most common bioabsorbable materials in the medical device field. However, its use in load-bearing applications is limited due to its inferior mechanical properties when compared to many of the competing metal-based permanent and bioabsorbable materials. The objective of this study was to directly compare the influence of both annealing and biaxial expansion processes to improve the material properties of PLLA. Results showed that both annealing and biaxial expansion led to an overall increase in crystallinity and that the crystallites formed during both processes were in the α’ and α forms. 2D-WAXS patterns showed that the preferred orientation of crystallites formed during annealing was parallel to the circumferential direction. While biaxial expansion resulted in orientation in both axial and circumferential directions, with relatively equal sized crystals in both directions, Da (112 Å) and Dc (97 Å). The expansion process had the most profound effect on mechanical performance, with a 65% increase in Young’s modulus, a 45% increase in maximum tensile stress and an 18-fold increase in strain at maximum load. These results indicate that biaxially expanding PLLA at a temperature above Tcc is possible, due to the high strain rates associated with stretch blow moulding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.