We show that efficient permeabilization of murine melanoma can be obtained in vivo by applying electric pulses. More than 80% of the cell population is affected as shown by the penetration of propidium iodide. A protein, beta-galactosidase, can be transferred and expressed into the cells by incorporating either the protein or a plasmid carrying the reporter gene with respective efficiencies of 20% and 4%. This is obtained by a direct injection of either the protein or the plasmid in the tumor, followed by the application of electric pulses with surface electrodes in contact with the skin. This approach is simple and safe to use, reproducible, and specific; moreover, it is potentially applicable to a wide variety of tissues, cell types, and animals.
Although many improvements in the manufacturing of guitars have been made recently, one aspect that has often been overlooked is that of the acoustical consistency of the final manufactured product. The aim of this paper is to create a better understanding of the effect of a brace on the frequencies of vibration of the brace-soundboard system. This paper seeks to shed light on why a luthier ‘tunes’ braces when a guitar soundboard is hand-manufactured. A simple analytical model of a rectangular brace and soundboard is derived from first principles using Kirchhoff plate theory in order to develop insight into the effect of the soundboard’s stiffness and brace thickness on the frequencies of the combined system. Natural frequencies and modeshapes of the combined system are calculated via the assumed shape method. Results show that by adjusting the thickness of the brace in order to compensate for the stiffness of the plate, one of the natural frequencies of the combined system can be adjusted to meet a desired value. However, simultaneously adjusting several natural frequencies cannot be done with a rectangular brace. Therefore modifications to the shape of the brace are explored.
Shaping the soundboard braces on a wooden stringed musical instrument has long been a way in which instrument makers optimize their musical instruments. Reasons for these methods are scientifically not well understood. Various bracing patterns have successfully been used to create different-sounding wooden stringed musical instruments. These bracing patterns stimulate the modeshapes that are specific to the soundboard of the instrument. However, a higher adjustment resolution is required in order to specify the frequency spectrum of the musical instrument. This paper demonstrates how the shape of the braces affects the modeshapes of the vibrating system. A simple analytical model composed of a plate and brace is analyzed in order to see these effects. The results are plotted together for three cases: the plate by itself, the plate with a rectangular brace and the plate with a scalloped brace. For clarity, the modeshapes are analysed in 2D at different locations and along both the x and y directions of the plate. It is shown that any brace affects modeshapes for which the brace does not run along a nodal line. The different shapes of the brace are shown to affect different modeshapes by various degrees. If braces are stiffened at locations of maximum amplitude for a given modeshape, then that modeshape will be significantly affected. It is clear that by properly designing the shape of a brace, instrument makers can exert great control over the shape of the instrument's modeshapes and therefore also their frequencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.