Summary1. Long-term pedogenesis leads to important changes in the availability of soil nutrients, especially nitrogen (N) and phosphorus (P). Changes in the availability of micronutrients can also occur, but are less well understood. We explored whether changes in leaf nutrient concentrations and resorption were consistent with a shift from N to P limitation of plant productivity with soil age along a > 2-million-year dune chronosequence in south-western Australia. We also compared these traits among plants of contrasting nutrient-acquisition strategies, focusing on N, P and micronutrients. 2. The range in leaf [P] for individual species along the chronosequence was exceptionally large for both green (103-3000 lg P g À1 ) and senesced (19-5600 lg P g À1 ) leaves, almost equalling that found globally. From the youngest to the oldest soil, cover-weighted mean leaf [P] declined from 1840 to 228 lg P g À1 , while P-resorption efficiency increased from 0% to 79%. All species converged towards a highly conservative P-use strategy on the oldest soils. 3. Declines in cover-weighted mean leaf [N] with soil age were less strong than for leaf [P], ranging from 13.4 mg N g À1 on the youngest soil to 9.5 mg N g À1 on the oldest soil. However, mean leaf N-resorption efficiency was greatest (45%) on the youngest, N-poor soils. Leaf N:P ratio increased from 8 on the youngest soil to 42 on the oldest soil. 4. Leaf zinc (Zn) concentrations were low across all chronosequence stages, but mean Zn-resorption efficiency was greatest (55-74%) on the youngest calcareous dunes, reflecting low Zn availability at high pH. 5. N 2 -fixing species had high leaf [N] compared with other species. Non-mycorrhizal species had very low leaf [P] and accumulated Mn across all soils. We surmise that this reflects Mn solubilization by organic acids released for P acquisition. 6. Synthesis. Our results show community-wide variation in leaf nutrient concentrations and resorption that is consistent with a shift from N to P limitation during long-term ecosystem development. High Zn resorption on young calcareous dunes supports the possibility of micronutrient co-limitation. High leaf [Mn] on older dunes suggests the importance of carboxylate release for P acquisition. Our results show a strong effect of soil nutrient availability on nutrient-use efficiency and reveal considerable differences among plants of contrasting nutrient-acquisition strategies.
Belowground organisms play critical roles in maintaining multiple ecosystem processes, including plant productivity, decomposition, and nutrient cycling. Despite their importance, however, we have a limited understanding of how and why belowground biodiversity (bacteria, fungi, protists, and invertebrates) may change as soils develop over centuries to millennia (pedogenesis). Moreover, it is unclear whether belowground biodiversity changes during pedogenesis are similar to the patterns observed for aboveground plant diversity. Here we evaluated the roles of resource availability, nutrient stoichiometry, and soil abiotic factors in driving belowground biodiversity across 16 soil chronosequences (from centuries to millennia) spanning a wide range of globally distributed ecosystem types. Changes in belowground biodiversity during pedogenesis followed two main patterns. In lower-productivity ecosystems (i.e., drier and colder), increases in belowground biodiversity tracked increases in plant cover. In more productive ecosystems (i.e., wetter and warmer), increased acidification during pedogenesis was associated with declines in belowground biodiversity. Changes in the diversity of bacteria, fungi, protists, and invertebrates with pedogenesis were strongly and positively correlated worldwide, highlighting that belowground biodiversity shares similar ecological drivers as soils and ecosystems develop. In general, temporal changes in aboveground plant diversity and belowground biodiversity were not correlated, challenging the common perception that belowground biodiversity should follow similar patterns to those of plant diversity during ecosystem development. Taken together, our findings provide evidence that ecological patterns in belowground biodiversity are predictable across major globally distributed ecosystem types and suggest that shifts in plant cover and soil acidification during ecosystem development are associated with changes in belowground biodiversity over centuries to millennia.
There is an increased recognition in the field of toxicology of the value of medium-to-high-throughput screening methods using in vitro and alternative animal models. We have previously introduced the asexual freshwater planarian Dugesia japonica as a new alternative animal model and proposed that it is particularly well-suited for the study of developmental neurotoxicology. In this paper, we discuss how we have expanded and automated our screening methodology to allow for fast screening of multiple behavioral endpoints, developmental toxicity, and mortality. Using an 87-compound library provided by the National Toxicology Program (NTP), consisting of known and suspected neurotoxicants, including drugs, flame retardants, industrial chemicals, polycyclic aromatic hydrocarbons (PAHs), pesticides and presumptive negative controls, we further evaluate the benefits and limitations of the system for medium-throughput screening, focusing on the technical aspects of the system. We show that, in the context of this library, planarians are the most sensitive to pesticides with 16/16 compounds causing toxicity and the least sensitive to PAHs, with only 5/17 causing toxicity. Furthermore, while none of the presumptive negative controls were bioactive in adult planarians, 2/5, acetaminophen and acetylsalicylic acid, were bioactive in regenerating worms. Notably, these compounds were previously reported as developmentally toxic in mammalian studies. Through parallel screening of adults and developing animals, planarians are thus a useful model to detect such developmental-specific effects, which was observed for 13 chemicals in this library. We use the data and experience gained from this screen to propose guidelines for best practices when using planarians for toxicology screens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.