The disruption of traditional migratory routes by anthropogenic disturbances has shifted patterns of resource selection by many species, and in some instances has caused populations to decline. Moreover, in recent decades populations of mule deer (Odocoileus hemionus) have declined throughout much of their historic range in the western United States. We used resource‐selection functions to determine if the presence of natural‐gas development altered patterns of resource selection by migrating mule deer. We compared spring migration routes of adult female mule deer fitted with GPS collars (n = 167) among four study areas that had varying degrees of natural‐gas development from 2008 to 2010 in the Piceance Basin of northwest Colorado, USA. Mule deer migrating through the most developed area had longer step lengths (straight‐line distance between successive GPS locations) compared with deer in less‐developed areas. Additionally, deer migrating through the most developed study areas tended to select for habitat types that provided greater amounts of concealment cover, whereas deer from the least developed areas tended to select habitats that increased access to forage and cover. Deer selected habitats closer to well pads and avoided roads in all instances except along the most highly developed migratory routes, where road densities may have been too high for deer to avoid roads without deviating substantially from established migration routes. These results indicate that behavioral tendencies toward avoidance of anthropogenic disturbance can be overridden during migration by the strong fidelity ungulates demonstrate towards migration routes. If avoidance is feasible, then deer may select areas further from development, whereas in highly developed areas, deer may simply increase their rate of travel along established migration routes.
Human activity and land use change impact every landscape on Earth, driving declines in many animal species while benefiting others. Species ecological and life history traits may predict success in human‐dominated landscapes such that only species with “winning” combinations of traits will persist in disturbed environments. However, this link between species traits and successful coexistence with humans remains obscured by the complexity of anthropogenic disturbances and variability among study systems. We compiled detection data for 24 mammal species from 61 populations across North America to quantify the effects of (1) the direct presence of people and (2) the human footprint (landscape modification) on mammal occurrence and activity levels. Thirty‐three percent of mammal species exhibited a net negative response (i.e., reduced occurrence or activity) to increasing human presence and/or footprint across populations, whereas 58% of species were positively associated with increasing disturbance. However, apparent benefits of human presence and footprint tended to decrease or disappear at higher disturbance levels, indicative of thresholds in mammal species’ capacity to tolerate disturbance or exploit human‐dominated landscapes. Species ecological and life history traits were strong predictors of their responses to human footprint, with increasing footprint favoring smaller, less carnivorous, faster‐reproducing species. The positive and negative effects of human presence were distributed more randomly with respect to species trait values, with apparent winners and losers across a range of body sizes and dietary guilds. Differential responses by some species to human presence and human footprint highlight the importance of considering these two forms of human disturbance separately when estimating anthropogenic impacts on wildlife. Our approach provides insights into the complex mechanisms through which human activities shape mammal communities globally, revealing the drivers of the loss of larger predators in human‐modified landscapes.
We tested for seasonal differences in cougar (Puma concolor) foraging behaviors in the Southern Yellowstone Ecosystem, a multi-prey system in which ungulate prey migrate, and cougars do not. We recorded 411 winter prey and 239 summer prey killed by 28 female and 10 male cougars, and an additional 37 prey items by unmarked cougars. Deer composed 42.4% of summer cougar diets but only 7.2% of winter diets. Males and females, however, selected different proportions of different prey; male cougars selected more elk (Cervus elaphus) and moose (Alces alces) than females, while females killed greater proportions of bighorn sheep (Ovis canadensis), pronghorn (Antilocapra americana), mule deer (Odocoileus hemionus) and small prey than males. Kill rates did not vary by season or between males and females. In winter, cougars were more likely to kill prey on the landscape as: 1) elevation decreased, 2) distance to edge habitat decreased, 3) distance to large bodies of water decreased, and 4) steepness increased, whereas in summer, cougars were more likely to kill in areas as: 1) elevation decreased, 2) distance to edge habitat decreased, and 3) distance from large bodies of water increased. Our work highlighted that seasonal prey selection exhibited by stationary carnivores in systems with migratory prey is not only driven by changing prey vulnerability, but also by changing prey abundances. Elk and deer migrations may also be sustaining stationary cougar populations and creating apparent competition scenarios that result in higher predation rates on migratory bighorn sheep in winter and pronghorn in summer. Nevertheless, cougar predation on rare ungulates also appeared to be influenced by individual prey selection.
BackgroundMigration is an adaptive strategy that enables animals to enhance resource availability and reduce risk of predation at a broad geographic scale. Ungulate migrations generally occur along traditional routes, many of which have been disrupted by anthropogenic disturbances. Spring migration in ungulates is of particular importance for conservation planning, because it is closely coupled with timing of parturition. The degree to which oil and gas development affects migratory patterns, and whether ungulate migration is sufficiently plastic to compensate for such changes, warrants additional study to better understand this critical conservation issue.Methodology/Principal FindingsWe studied timing and synchrony of departure from winter range and arrival to summer range of female mule deer (Odocoileus hemionus) in northwestern Colorado, USA, which has one of the largest natural-gas reserves currently under development in North America. We hypothesized that in addition to local weather, plant phenology, and individual life-history characteristics, patterns of spring migration would be modified by disturbances associated with natural-gas extraction. We captured 205 adult female mule deer, equipped them with GPS collars, and observed patterns of spring migration during 2008–2010.Conclusions/SignificanceTiming of spring migration was related to winter weather (particularly snow depth) and access to emerging vegetation, which varied among years, but was highly synchronous across study areas within years. Additionally, timing of migration was influenced by the collective effects of anthropogenic disturbance, rate of travel, distance traveled, and body condition of adult females. Rates of travel were more rapid over shorter migration distances in areas of high natural-gas development resulting in the delayed departure, but early arrival for females migrating in areas with high development compared with less-developed areas. Such shifts in behavior could have consequences for timing of arrival on birthing areas, especially where mule deer migrate over longer distances or for greater durations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.