Purpose: The Hedgehog pathway plays an important role in stem-cell biology and malignant transformation. Therefore, we investigated the expression and prognostic impact of Hedgehog pathway members in acute myeloid leukemia (AML).Experimental Design: Pretreatment samples from 104 newly diagnosed AML patients (AMLSG 07-04 trial) were analyzed by qPCR, and expression of Hedgehog family members was correlated with clinical outcome. Inhibition of GLI by GANT61 or shRNA was investigated in AML cells in vitro and in vivo.Results: Expression of receptors Smoothened and Patched-1 and their downstream mediators, GLI1, GLI2, and GLI3, was found in AML patients in contrast to Hedgehog ligands. GLI2 expression had a significant negative influence on event-free survival (EFS), relapse-free survival (RFS), and overall survival (OS; P ¼ 0.037, 0.026, and 0.013, respectively) and was correlated with FLT3 mutational status (P < 0.001). Analysis of a second, independent patient cohort confirmed the negative impact of GLI2 on EFS and OS (P ¼ 0.007 and 0.003, respectively; n ¼ 290). Within this cohort, GLI1 had a negative prognostic impact (P < 0.001 for both EFS and OS). Although AML cells did not express Hedgehog ligands by qPCR, AML patients had significantly increased Desert Hedgehog (DHH) plasma levels compared with healthy subjects (P ¼ 0.002), in whom DHH was presumably provided by bone marrow niche cells. Moreover, the GLI inhibitor GANT61 or knockdown of GLI1/2 by shRNA caused antileukemic effects, including induction of apoptosis, reduced proliferation, and colony formation in AML cells, and a survival benefit in mice.Conclusions: GLI expression is a negative prognostic factor and might represent a novel druggable target in AML. Clin Cancer Res; 21(10); 2388-98. Ó2015 AACR.
Human inositol phosphate multikinase (IPMK) is a multifunctional protein in cellular signal transduction, namely, a multispecific inositol phosphate kinase, phosphatidylinositol 3-kinase, and a scaffold within the mTOR-raptor complex. To fulfill these nuclear and cytoplasmic functions, intracellular targeting of IPMK needs to be regulated. We show here that IPMK, which has been considered to be a preferentially nuclear protein, is a nucleocytoplasmic shuttling protein, whose nuclear export is mediated by classical nuclear export receptor CRM1. We identified a functional nuclear export signal (NES) additionally to its previously described nuclear import signal (NLS). Furthermore, we describe a mechanism by which the activity of the IPMK-NLS is controlled. Protein kinase CK2 binds endogenous IPMK and phosphorylates it at serine 284. Interestingly, this phosphorylation can decrease nuclear localization of IPMK cell type specifically. A controlled nuclear import of IPMK may direct its actions either toward nuclear inositol phosphate (InsPx) metabolism or cytoplasmic actions on InsPx, phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P₂], as well as mTOR-raptor.
Constitutive activation of the PI3K/AKT signaling pathway is found in ~50-70% of AML patients. The SH2-containing inositol 5-phosphatase 1 (SHIP1) is a negative regulator of PI3K/AKT signaling in hematopoietic cells. SHIP1 knockout mice develop a myeloproliferative syndrome and concomitant deletion of SHIP1 and the tumor suppressor PTEN leads to the development of lethal B-cell lymphomas. In the study presented here, we investigated the role of SHIP1 as a tumor suppressor in myeloid leukemia cells in an in vivo xenograft transplantation model. NSG Mice transplanted with UKE-1 cells derived from a secondary AML showed a significantly extended lifespan after lentiviral-mediated overexpression of SHIP1 in comparison to the vector control cohort. In contrast, the AML-derived SHIP1 mutant, which has a strongly reduced enzymatic activity showed a significant reversion of the SHIP1-induced prolongation of the survival time. In addition, the analysis of 290 AML patients revealed a correlation between expression of SHIP1 and overall survival of the AML patients. These results indicate that SHIP1 can act as a tumor suppressor in acute myeloid leukemia cells and that higher SHIP1 expression is associated with prolonged overall survival in AML patients. SHIP1 may be an interesting candidate for gene therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.