In these lecture notes, we review some recent works on Hamiltonian lattice
gauge theories, that involve, in particular, tensor network methods.
The results reviewed here are tailored together in a slightly different
way from the one used in the contexts where they were first introduced.
We look at the Gauss law from two different points of view:
for the gauge field, it is a differential equation, while from
the matter point of view, on the other hand, it is a simple, explicit algebraic equation.
We will review and discuss what these two points of view allow and do not allow us to do, in terms of unitarily gauging a pure-matter theory and eliminating the matter from a gauge theory, and relate that to the construction of PEPS (Projected Entangled Pair States) for lattice gauge theories.
We introduce a class of variational states to study ground-state properties and real-time dynamics in (2 + 1)-dimensional compact QED. These are based on complex Gaussian states which are made periodic to account for the compact nature of the U (1) gauge field. Since the evaluation of expectation values involves infinite sums, we present an approximation scheme for the whole variational manifold. We calculate the ground-state energy density for lattice sizes up to 20 × 20 and extrapolate to the thermodynamic limit for the whole coupling region. Additionally, we study the string tension both by fitting the potential between two static charges and by fitting the exponential decay of spatial Wilson loops. As the ansatz does not require a truncation in the local Hilbert spaces, we analyze truncation effects which are present in other approaches. The variational states are benchmarked against exact solutions known for the one plaquette case and exact diagonalization results for a Z 3 lattice gauge theory. Using the time-dependent variational principle, we study real-time dynamics after various global quenches, e.g., the time evolution of a strongly confined electric field between two charges after a quench to the weak-coupling regime. Up to the points where finite-size effects start to play a role, we observe equilibrating behavior.
Variational minimization of tensor network states enables the exploration of low energy states of lattice gauge theories. However, the exact numerical evaluation of high-dimensional tensor network states remains challenging in general. In [E. Zohar and J. I. Cirac, Phys. Rev. D 97, 034510 (2018)] it was shown how, by combining gauged Gaussian projected entangled pair states with a variational Monte Carlo procedure, it is possible to efficiently compute physical observables. In this paper we demonstrate how this approach can be used to investigate numerically the ground state of a lattice gauge theory. More concretely, we explicitly carry out the variational Monte Carlo procedure based on such contraction methods for a pure gauge Kogut-Susskind Hamiltonian with a Z 3 gauge field in two spatial dimensions. This is a first proof of principle to the method, which provides an inherent way to increase the number of variational parameters and can be readily extended to systems with physical fermions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.