We report the direct experimental observation of photonic nanojets created by single latex microspheres illuminated by a plane wave at a wavelength of 520 nm. Measurements are performed with a fast scanning confocal microscope in detection mode, where the detection pinhole defines a diffraction-limited observation volume that is scanned in three dimensions over the microsphere vicinity. From the collected stack of images, we reconstruct the full 3 dimensional photonic nanojet beam. Observations are conducted for polystyrene spheres of 1, 3 and 5 microm diameter deposited on a glass substrate, the upper medium being air or water. Experimental results are compared to calculations performed using the Mie theory. We measure nanojet sizes as small as 270 nm FWHM for a 3 microm sphere at a wavelength lambda of 520 nm. The beam keeps a subwavelength FWHM over a propagation distance of more than 3 lambda, displaying all the specificities of a photonic nanojet.
Controlling light properties with diffractive planar elements requires full-polarization channels and accurate reconstruction of optical signal for real applications. Here, we present a general method that enables wavefront shaping with arbitrary output polarization by encoding both phase and polarization information into pixelated metasurfaces. We apply this concept to convert an input plane wave with linear polarization to a holographic image with arbitrary spatial output polarization. A vectorial ptychography technique is introduced for mapping the Jones matrix to monitor the reconstructed metasurface output field and to compute the full polarization properties of the vectorial far field patterns, confirming that pixelated interfaces can deflect vectorial images to desired directions for accurate targeting and wavefront shaping. Multiplexing pixelated deflectors that address different polarizations have been integrated into a shared aperture to display several arbitrary polarized images, leading to promising new applications in vector beam generation, full color display and augmented/ virtual reality imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.