The role of eosinophils as effector cells in asthma pathogenesis has been questioned since an anti-interleukin (IL)-5 monoclonal antibody (mepolizumab), which depleted blood and sputum eosinophils, failed to inhibit allergen-induced bronchoconstriction and airway hyperresponsiveness. However, the effect of IL-5 blockade on tissue eosinophils was not examined. We sought to determine whether mepolizumab depletes airway tissue eosinophils and their products. Twenty-four patients with mild asthma received three intravenous doses of either 750 mg of mepolizumab or placebo in a randomized, double-blind, parallel-group fashion over 20 weeks. Mepolizumab produced a median decrease from baseline of 55% for airway eosinophils (interquartile range, 29-89%; p = 0.009 versus placebo), 52% for bone marrow eosinophils (45-76%, p = 0.003), and 100% for blood eosinophils (range, 67-100%, p = 0.02). Mepolizumab had no appreciable effect on bronchial mucosal staining of eosinophil major basic protein. There were no significant changes in clinical measures of asthma (airway hyperresponsiveness, FEV1, and peak flow recordings) between the mepolizumab and placebo-treated groups. Anti-IL-5 treatment reduces but does not deplete airway or bone marrow eosinophils. The role of the eosinophil remains uncertain. Further clinical studies in asthma with more effective antieosinophil strategies are required.
Mepolizumab treatment does not appear to add significant clinical benefit in patients with asthma with persistent symptoms despite inhaled corticosteroid therapy. Further studies are needed to investigate the effect of mepolizumab on exacerbation rates, using protocols specifically tailored to patients with asthma with persistent airway eosinophilia.
Eosinophil-derived TGF-β has been implicated in remodeling events in asthma. We hypothesized that reduction of bronchial mucosal eosinophils with anti–IL-5 would reduce markers of airway remodeling. Bronchial biopsies were obtained before and after three infusions of a humanized, anti–IL-5 monoclonal antibody (mepolizumab) in 24 atopic asthmatics in a randomized, double-blind, placebo-controlled study. The thickness and density of tenascin, lumican, and procollagen III in the reticular basement membrane (RBM) were quantified immunohistochemically by confocal microscopy. Expression of TGF-β1 mRNA by airway eosinophils was assessed by in situ hybridization, and TGF-β1 protein was measured in bronchoalveolar lavage (BAL) fluid by ELISA. At baseline, airway eosinophil infiltration and ECM protein deposition was increased in the RBM of asthmatics compared with nonasthmatic controls. Treating asthmatics with anti–IL-5 antibody, which specifically decreased airway eosinophil numbers, significantly reduced the expression of tenascin, lumican, and procollagen III in the bronchial mucosal RBM when compared with placebo. In addition, anti–IL-5 treatment was associated with a significant reduction in the numbers and percentage of airway eosinophils expressing mRNA for TGF-β1 and the concentration of TGF-β1 in BAL fluid. Therefore eosinophils may contribute to tissue remodeling processes in asthma by regulating the deposition of ECM proteins
Eosinophil-derived TGF-β has been implicated in remodeling events in asthma. We hypothesized that reduction of bronchial mucosal eosinophils with anti-IL-5 would reduce markers of airway remodeling. Bronchial biopsies were obtained before and after three infusions of a humanized, anti-IL-5 monoclonal antibody (mepolizumab) in 24 atopic asthmatics in a randomized, double-blind, placebo-controlled study. The thickness and density of tenascin, lumican, and procollagen III in the reticular basement membrane (RBM) were quantified immunohistochemically by confocal microscopy. Expression of TGF-β1 mRNA by airway eosinophils was assessed by in situ hybridization, and TGF-β1 protein was measured in bronchoalveolar lavage (BAL) fluid by ELISA. At baseline, airway eosinophil infiltration and ECM protein deposition was increased in the RBM of asthmatics compared with nonasthmatic controls. Treating asthmatics with anti-IL-5 antibody, which specifically decreased airway eosinophil numbers, significantly reduced the expression of tenascin, lumican, and procollagen III in the bronchial mucosal RBM when compared with placebo. In addition, anti-IL-5 treatment was associated with a significant reduction in the numbers and percentage of airway eosinophils expressing mRNA for TGF-β1 and the concentration of TGF-β1 in BAL fluid. Therefore eosinophils may contribute to tissue remodeling processes in asthma by regulating the deposition of ECM proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.