We explore constraints on gauge bosons of a weakly coupled U(1) B−L , U(1) Lµ−Le , U(1) Le−Lτ and U(1) Lµ−Lτ . To do so we apply the full constraining power of experimental bounds derived for a hidden photon of a secluded U(1) X and translate them to the considered gauge groups. In contrast to the secluded hidden photon that acquires universal couplings to charged Standard Model particles through kinetic mixing with the photon, for these gauge groups the couplings to the different Standard Model particles can vary widely. We take finite, computable loop-induced kinetic mixing effects into account, which provide additional sensitivity in a range of experiments. In addition, we collect and extend limits from neutrino experiments as well as astrophysical and cosmological observations and include new constraints from white dwarf cooling. We discuss the reach of future experiments in searching for these gauge bosons.
Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these long-lived particles (LLPs) can decay far from the interaction vertex of the primary proton–proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP signatures at the LHC is beneficial to ensure that possible avenues of the discovery of new physics are not overlooked. Here we report on the joint work of a community of theorists and experimentalists with the ATLAS, CMS, and LHCb experiments—as well as those working on dedicated experiments such as MoEDAL, milliQan, MATHUSLA, CODEX-b, and FASER—to survey the current state of LLP searches at the LHC, and to chart a path for the development of LLP searches into the future, both in the upcoming Run 3 and at the high-luminosity LHC. The work is organized around the current and future potential capabilities of LHC experiments to generally discover new LLPs, and takes a signature-based approach to surveying classes of models that give rise to LLPs rather than emphasizing any particular theory motivation. We develop a set of simplified models; assess the coverage of current searches; document known, often unexpected backgrounds; explore the capabilities of proposed detector upgrades; provide recommendations for the presentation of search results; and look towards the newest frontiers, namely high-multiplicity ‘dark showers’, highlighting opportunities for expanding the LHC reach for these signals.
As experimental null results increase the pressure on heavy weakly interacting massive particles (WIMPs) as an explanation of thermal dark matter (DM), it seems timely to explore previously overlooked regions of the WIMP parameter space. In this work we extend the minimal gauged Uð1Þ L μ −L τ model studied in [M. Bauer, P. Foldenauer, and J. Jaeckel, J. High Energy Phys. 07 (2018) 094.] by a light (MeV-scale) vectorlike fermion χ. Taking into account constraints from cosmology, direct and indirect detection we find that the standard benchmark of M V ¼ 3m χ for DM coupled to a vector mediator is firmly ruled out for unit DM charges. However, exploring the near-resonance region M V ≳ 2m χ we find that this model can simultaneously explain the DM relic abundance Ωh 2 ¼ 0.12 and the ðg − 2Þ μ anomaly. Allowing for small charge hierarchies of ≲Oð10Þ, we identify a second window of parameter space in the few-GeV region, where χ can account for the full DM relic density.
Models of gauged $$ \mathrm{U}{(1)}_{L_{\mu }-{L}_{\tau }} $$ U 1 L μ − L τ can provide a solution to the long-standing discrepancy between the theoretical prediction for the muon anomalous magnetic moment and its measured value. The extra contribution is due to a new light vector mediator, which also helps to alleviate an existing tension in the determination of the Hubble parameter. In this article, we explore ways to probe this solution via the scattering of solar neutrinos with electrons and nuclei in a range of experiments and considering high and low solar metallicity scenarios. In particular, we reevaluate Borexino constraints on neutrino-electron scattering, finding them to be more stringent than previously reported, and already excluding a part of the (g − 2)μ explanation with mediator masses smaller than 2 × 10−2 GeV. We then show that future direct dark matter detectors will be able to probe most of the remaining solution. Due to its large exposure, LUX-ZEPLIN will explore regions with mediator masses up to 5 × 10−2 GeV and DARWIN will be able to extend the search beyond 10−1 GeV, thereby covering most of the area compatible with (g − 2)μ. For completeness, we have also computed the constraints derived from the recent XENON1T electron recoil search and from the CENNS-10 LAr detector, showing that none of them excludes new areas of the parameter space. Should the excess in the muon anomalous magnetic moment be confirmed, our work suggests that direct detection experiments could provide crucial information with which to test the $$ \mathrm{U}{(1)}_{L_{\mu }-{L}_{\tau }} $$ U 1 L μ − L τ solution, complementary to efforts in neutrino experiments and accelerators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.