h i g h l i g h t sTwo single hole nozzle (cylindrical and convergent) are used. A complete hydraulic characterization is done along with spray visualization. A fast pulsed light source is synchronized to a fast camera working at 160 kHz. The effect of nozzle geometry is analyzed for three different fuels. A large set of experimental data was obtained, which could be used for model validation.
a b s t r a c tThe influence of internal nozzle flow characteristics over macroscopic spray development is studied experimentally for two different nozzle geometries and three fuels. The measurements include a complete hydraulic characterization consisting of instantaneous injection rate and spray momentum flux measurements, followed by a high-speed visualization of isothermal liquid spray in combination with cylindrical and conical nozzle configurations. Two of the fuels are pure components-n-heptane and ndodecane-while the third fuel consists of a three-component surrogate to better represent the physical and chemical properties of diesel fuel. The cylindrical nozzle with 8.6% larger diameter, in spite of higher mass flow rate and momentum flux, shows slower spray tip penetration when compared to the conical nozzle. The spreading angle is found to be inversely proportional to the spray tip penetration. The spreading angle is largely influenced by the nozzle geometry and the ambient density. Rail pressure was found to have weak influence on the near-field spreading angle and no influence on the standard deviation of the spreading angle. n-Heptane spray shows slowest penetration rates while n-dodecane and the surrogate fuel mixture show very similar spray behavior for variations in injection pressure and back pressure. However, the surrogate fuel mixture shows higher penetration than n-dodecane when using the conical nozzle and lower penetration than n-dodecane when using cylindrical nozzle.
Diesel fuel is composed of a complex mixture of hundreds of hydrocarbons that vary globally depending on crude oil sources, refining processes, legislative requirements and other factors. In order to simplify the study of this fuel, researchers create surrogate fuels to mimic the physical and chemical properties of Diesel fuels. This work employed the commercial software Reaction Workbench-Surrogate Blend Optimizer (SBO) to develop a Surrogate Fuel Library containing 18 fuels. Within the fuel library, the cetane number ranges from 35 to 60 (in increments of 5) at threshold soot index (TSI) levels representative of low, baseline and high sooting tendency fuels (TSI = 17, 31 and 48, respectively). The Surrogate Fuel Library provides the component blend ratios and predicted properties for cetane number, threshold soot index, lower heating value, density, kinematic viscosity, molar hydrogen-to-carbon ratio and distillation curve temperatures from T10 to T90. A market petroleum Diesel fuel with a cetane number of 50 and a threshold soot index of 31 was selected as the Baseline Diesel Fuel. The combustion, physical and chemical properties of the Baseline Diesel Fuel were precisely matched by the Baseline Surrogate Fuel. To validate the SBO predicted fuel properties, a set of five surrogate fuels, deviating in cetane number and threshold soot index, were blended and examined with ASTM tests. Good agreement was obtained between the SBO predicted and ASTM measured fuel properties. To further validate the Surrogate Fuel Library, key properties that were effected by altering the component blend ratios to control cetane number and TSI were compared to a set of five market Diesel fuels with good results. These properties included density, viscosity, energy 2 density and the T10 and T90 distillation temperatures. The Surrogate Fuel Library provided by this work supplies Diesel engine researchers and designers the ability to analytically and experimentally vary fuel cetane number and threshold soot index with fully-representative surrogate fuels. This new capability to independently vary cetane number and threshold soot index provides a means to further enhance the understanding of Diesel combustion and design future combustion systems that improve efficiency and emissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.