Abstract-Numerous sophisticated algorithms exist for discovering reoccurring patterns in financial time series. However, the most accurate techniques available produce opaque models, from which it is impossible to discern the rationale behind trading decisions. It is therefore desirable to sacrifice some degree of accuracy for transparency. One fairly recent evolutionary computational technology that creates transparent models, using a user-specified grammar, is grammatical evolution (GE). In this paper, we explore the possibility of evolving transparent entry-and exit trading strategies for the Emini S&P 500 index futures market in a high-frequency trading environment using grammatical evolution. We compare the performance of models incorporating risk into their calculations with models that do not. Our empirical results suggest that profitable, risk-averse, transparent trading strategies for the Emini S&P 500 can be obtained using grammatical evolution together with technical indicators.
Abstract-This paper explores the possibility of using the Hierarchical Temporal Memory (HTM) machine learning technology to create a profitable software agent for trading financial markets. Technical indicators, derived from intraday tick data for the E-mini S&P 500 futures market (ES), were used as features vectors to the HTM models. All models were configured as binary classifiers, using a simple buy-and-hold trading strategy, and followed a supervised training scheme. The data set was divided into a training set, a validation set and three test sets; bearish, bullish and horizontal. The best performing model on the validation set was tested on the three test sets. Artificial Neural Networks (ANNs) were subjected to the same data sets in order to benchmark HTM performance. The results suggest that the HTM technology can be used together with a feature vector of technical indicators to create a profitable trading algorithm for financial markets. Results also suggest that HTM performance is, at the very least, comparable to commonly applied neural network models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.