In 2012 non-destructive testing measurements (NDT) of the reactor pressure vessels (RPV) in the Belgian Nuclear Power Plants Doel 3 and Tihange 2 revealed a high quantity of indications in the upper and lower core shells. The most likely explanation is that the measured indications are hydrogen flakes positioned in segregated zones in the base material of the pressure vessels. These hydrogen flakes have a laminar and quasi-laminar orientation with an inclination up to 15° to the pressure retaining surface. Under internal pressure, the crack tips undergo predominantly mixed mode loading conditions, where the induced stress and strain fields of the single crack tips influence each other. The safety assessment of crack afflicted pressurized components is performed by fracture mechanical approaches. For the evaluation of multiple cracks in crack fields, state of the art codes and standards apply interaction criteria and grouping methods, to determine a representative crack, which has to be evaluated. In this paper, the interaction of cracks in crack fields is numerically and experimentally evaluated. Damage mechanical models based on the Rousselier- and the Beremin model are used to investigate numerically the interaction of cracks in crack fields. Experimental data from ferritic flat tensile specimens afflicted with cracks are used to verify the numerical results. The damage mechanical calculations reveal critical crack arrangements due to coalescence behavior and cleavage fracture probability. These results and ongoing research intends the derivation of interaction criteria for cracks in crack fields. The interaction criteria will be used for the definition of a representative flaw for a conservative integrity assessment of crack afflicted components.
During the 2012 outage of the Belgian nuclear power plants (NPP) Doel 3 and Tihange 2 non-destructive testing (NDT) measurements revealed a high quantity of indications in the upper and lower core shells of the reactor pressure vessels (RPV). A root cause analysis leads to the most likely hypothesis that the indications are hydrogen flakes in segregated zones of the RPV ferritic base material. The laminar and quasi-laminar orientation (0° – 15° inclination to the pressure retaining surface) of the hydrogen flakes, the interaction of several adjacent flakes and the mechanical loading conditions lead to a mixed-mode behavior at the crack tips. In the framework of an ongoing research project, experimental and numerical investigations are conducted with the aim to describe the failure behavior of such complex crack configurations. The experiments are carried out using two ferritic materials. One is a non-irradiated representative RPV steel (SA 508 Class 2) and the second material is a special lower bound melt of a modified 22NiMoCr3-7 steel (FKS test melt KS 07 C) containing hydrogen flakes. A material characterization is done for both materials including tensile specimens, notched round bars, shear-, torsion- and compact-tension-shear (CTS) - specimens to investigate different stress states. Furthermore, flat tensile specimens with eroded artificial crack fields are used to investigate the interaction between the cracks in different arranged crack fields. Numerical simulations are carried out with extended micromechanical based damage mechanics models. For the description of ductile failure an enhanced Rousselier model is used and an enhanced Beremin model to calculate the probability of cleavage fracture. To account the sensitivity for low stress triaxiality damage by shear loading, the Rousselier model was enhanced with a term to account for damage evolution by shear. The Beremin model will be enhanced with a term to account for different levels of triaxiality. For the numerical simulations in the transition region of ductile-to-brittle failure a coupled damage mechanics model (enhanced Rousselier and Beremin) will be used. In this paper, the current status of the ongoing research project and first results are presented.
There is a possibility that crack fields form in large forgings, if the chemical composition and the manufacturing conditions interact in an unfavorable way and lead to hydrogen flaking. Comparable crack fields were found for example during ultrasonic inspections in reactor pressure vessels of two Belgian nuclear power plants in 2012. In an ongoing research project, new approaches for the assessment of crack fields are developed. The investigation of the reliability of ultrasonic testing techniques for crack fields is also a part of this project. Ultrasonic testing (UT) took place at a test block containing a crack field. The test block was later cut into plates and test specimen for destructive material tests were manufactured. In addition to the ultrasonic testing, magnetic particle testing (MT) was applied at the cutting surfaces of the plates and radiographic testing (RT) was done at the plates. The sum of all nondestructive examinations lead to a data set, that is in general suitable for the calculation of probability of detection curves (PoD). MT and RT deliver crack locations and crack sizes that are compared to the UT results. With the results, PoD curves are calculated for UT testing at the crack field. Due to shadowing and material damping, the PoD curves should become poorer for areas deeper in the crack field. The paper shows the results from a PoD calculation using a Hit/Miss-Analysis from experimental data. The limits of the technique are discussed as well. Additionally, the interaction for the detected flaws will be investigated as far as possible according to actual codes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.