For the problem to find an m-clique in an m-partite graph, staircase compatibility has recently been introduced as a polynomial-time solvable special case. It is a property of a graph together with an m-partition of the vertex set and total orders on each subset of the partition. In optimization problems involving m-cliques in m-partite graphs as a subproblem, it allows for totally unimodular linear programming formulations, which have shown to efficiently solve problems from different applications. In this work, we address questions concerning the recognizability of this property in the case where the m-partition of the graph is given, but suitable total orders are to be determined. While finding these total orders is NP-hard in general, we give several conditions under which it can be done in polynomial time. For bipartite graphs, we present a polynomial-time algorithm to recognize staircase compatibility and show that staircase total orders are unique up to a small set of reordering operations. On m-partite graphs, where the recognition problem is NP-complete in the general case, we identify a polynomially solvable subcase and also provide a corresponding algorithm to compute the total orders. Finally, we evaluate the performance of our ordering algorithm for m-partite graphs on a set of artificial instances as well as real-world instances from a railway timetabling application. It turns out that applying the ordering algorithm to the real-world instances and subsequently solving the problem via the aforementioned totally unimodular reformulations indeed outperforms a generic formulation which does not exploit staircase compatibility.
In state-of-the-art mixed-integer programming solvers, a large array of reduction techniques are applied to simplify the problem and strengthen the model formulation before starting the actual branch-and-cut phase. Despite their mathematical simplicity, these methods can have significant impact on the solvability of a given problem. However, a crucial property for employing presolve techniques successfully is their speed. Hence, most methods inspect constraints or variables individually in order to guarantee linear complexity. In this paper, we present new hashing-based pairing mechanisms that help to overcome known performance limitations of more powerful presolve techniques that consider pairs of rows or columns. Additionally, we develop an enhancement to one of these presolve techniques by exploiting the presence of set-packing structures on binary variables in order to strengthen the resulting reductions without increasing runtime. We analyze the impact of these methods on the MIPLIB 2017 benchmark set based on an implementation in the MIP solver SCIP.
We introduce EETTlib, an instance library for the Energy‐Efficient Train Timetabling problem. The task in this problem is to adjust a given timetable draft such that the energy consumption of the resulting railway traffic is minimized. To this end, the departure times of the trains can be slightly, and their velocity profiles on each trip can be modified. We provide real‐world data originating from two research projects in this field, one with Deutsche Bahn AG, the most important railway company in Germany, the other with VAG Verkehrs‐Aktiengesellschaft, the operator of public transport in the city of Nürnberg, Germany. In both cases, our library contains representative data on the relevant operational constraints and supports various possible choices for the objective function with respect to energy‐efficiency. The resulting benchmark instances can be used by the scheduling and timetabling community to improve their models and algorithms. They are available under https://www.eettlib.fau.de.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.