Airconditioning (cooling) for buildings is the single largest use of electricity in the United States (U.S.). This drives summer peak electric demand in much of the U.S. Improved airconditioning technology thus has the greatest potential impact on the electric grid compared to other technologies that use electricity. Thermally-activated technologies (TAT), such as natural gas engine-driven heat pumps (GHP), can provide overall peak load reduction and electric grid relief for summer peak demand. GHP offers an attractive opportunity for commercial building owners to reduce electric demand charges and operating expenses. Engine-driven systems have several potential advantages over conventional single-speed or single-capacity electric motordriven units. Among them are variable speed operation, high part load efficiency, high temperature waste heat recovery from the engine, and reduced annual operating costs (SCGC 1998). Although gas engine-driven systems have been in use since the 1960s, current research is resulting in better performance, lower maintenance requirements, and longer operating lifetimes. Gas engine-driven systems are typically more expensive to purchase than comparable electric motor-driven systems, but they typically cost less to operate, especially for commercial building applications. Operating cost savings for commercial applications are primarily driven by electric demand charges. GHP operating costs are dominated by fuel costs, but also include maintenance costs. The reliability of gas cooling equipment has improved in the last few years and maintenance requirements have decreased (SCGC 1998, Yahagi et al. 2006). Another advantage of the GHP over electric motor-driven is the ability to use the heat rejected from the engine during heating operation. The recovered heat can be used to supplement the vapor compression cycle during heating or to supply other process loads, such as water heating. The use of the engine waste heat results in greater operating efficiency compared to conventional electric motor-driven units (SCGC 1998). In Japan, many hundreds of thousands of natural gas-driven heat pumps have been sold (typically 40,000 systems annually) (Yahagi et al. 2006). The goal of this program is to develop dependable and energy efficient GHPs suitable for U.S. commercial rooftop applications (the single largest commercial product segment). This study describes the laboratory performance evaluation of an integrated 10-ton GHP rooftop unit (a 900cc Daihatsu-Aisin natural gas engine) which uses R410A as the refrigerant (GEDAC #23). ORNL Thermally-Activated Heat Pump (TAHP) Environmental Chambers were used to evaluate this unit in a controlled laboratory environment. EXPERIMENTAL Temperature conditioning for each TAHP chamber is provided by a dedicated glycol fluid loop which circulates glycol at he appropriate temperature through the fluid-to-air heat exchanger in the room. Additional temperature conditioning is provided by sheathed electric heaters located directly in the air stream. Each glycol loo...
Solid oxide fuel cell (SOFC)/ gas turbine (GT) hybrid systems possess the capacity for unprecedented performances, such as electric efficiencies nearly twice that of conventional heat engines at variable scale power ratings inclusive of distributed generation. Additionally, these hybrids can have excellent operational flexibility with turndowns possibly as great as 85%. There are, however, developmental needs such as turbomachinery characterization and re-design. A leading example is that of greater propensity to have occurrences of stall-surge given the significantly different operating environment in contrast to conventional heat engines. Additionally, dynamic variation in power generation has to be done with significant a priori insight to avoid thermomechanical threats to cell stack and turbomachinery. State-of-the-art approaches involving hardware-in-the-loop simulation and, ultimately, additive manufacturing are being pursued to enable such characterization and re-design considerations given variable and dynamic operability requirements. Compressor performance in hybrid systems has been characterized at the United States National Energy Technology Laboratory (NETL), inclusive of a capability of feed forward hardware-in-the-loop simulation of hybrid systems under dynamic conditions and a capability of replacing turbine and compressor components at a relatively low cost. This paper highlights some of the simulation results, and the net result is an approach that addresses hybrid system developmental needs for accommodating generation transients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.