The endoplasmic reticulum (ER) consists of a polygonal network of sheets and tubules interconnected by three-way junctions. This network undergoes continual remodeling through competing processes: the branching and fusion of tubules forms new three-way junctions and new polygons, and junction sliding and ring closure leads to polygon loss. However, little is known about the machinery required to generate and maintain junctions. We previously reported that yeast Lnp1 localizes to ER junctions, and that loss of Lnp1 leads to a collapsed, densely reticulated ER network. In mammalian cells, only approximately half the junctions contain Lnp1. Here we use live cell imaging to show that mammalian Lnp1 (mLnp1) affects ER junction mobility and hence network dynamics. Three-way junctions with mLnp1 are less mobile than junctions without mLnp1. Newly formed junctions that acquire mLnp1 remain stable within the ER network, whereas nascent junctions that fail to acquire mLnp1 undergo rapid ring closure. These findings imply that mLnp1 plays a key role in stabilizing nascent three-way ER junctions.
Metabolomics and biochemical assays were employed to identify physiological perturbations induced by a commercial formulation of glyphosate in susceptible (S) and resistant (R) biotypes of Amaranthus palmeri. At 8 h after treatment (HAT), compared to the respective water-treated control, cellular metabolism of both biotypes were similarly perturbed by glyphosate, resulting in abundance of most metabolites including shikimic acid, amino acids, organic acids and sugars. However, by 80 HAT the metabolite pool of glyphosate-treated R-biotype was similar to that of the control S- and R-biotypes, indicating a potential physiological recovery. Furthermore, the glyphosate-treated R-biotype had lower reactive oxygen species (ROS) damage, higher ROS scavenging activity, and higher levels of potential antioxidant compounds derived from the phenylpropanoid pathway. Thus, metabolomics, in conjunction with biochemical assays, indicate that glyphosate-induced metabolic perturbations are not limited to the shikimate pathway, and the oxidant quenching efficiency could potentially complement the glyphosate resistance in this R-biotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.