A method of detecting and quantifying dehydroepiandrosterone (DHEA) sulfate, corticosteroids, and androgens has been developed. All of the compounds were first extracted from urine using solid phase extraction (SPE), enzymatically hydrolyzed, and separated into three samples using a second SPE. A DHEA sulfate sample was acetylated and re-extracted using SPE for purification before analysis. Corticosteroid samples were oxidized and re-extracted using liquid/liquid extraction for analysis. Androgen samples were acetylated and re-extracted using SPE prior to analysis. The extraction and analysis methods were investigated and optimized. Analyses were performed with gas chromatography/mass spectrometry (GC/MS) and gas chromatography/flame ionization detection (GC/FID). The entire procedure was then applied to the study of urine profiles of healthy volunteers and patients treated with corticosteroids. The results showed that the quantities of androgens found in patient urines were lower than in those of healthy volunteers. In addition, other metabolites were detected in patient urines.
Dehydroepiandrosterone (DHEA) and its metabolite androsterone (A) are natural steroids secreted in high quantities in human body. To assess the influence of oral contraceptives, menstrual cycle phase, and also physical exercise (acute and chronic such as training) on these metabolites excretions, a collection of 28 female urine specimens was organized. A three-extraction-step method was developed, and the analyses were performed by gas chromatography-mass spectrometry using deuterated 19-noretiocholanolone as the internal standard. Sample hydration state was found to be of great importance for kinetic studies, as it directly influenced the concentrations. No influence of menstrual cycle and training was found for androsterone and DHEA. However, oral contraceptive intake lowered DHEA excretion in urine and A seems to be slightly affected by exercise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.