In addition to sensory disturbances, neuropathic pain is associated with an ongoing and persistent negative affective state. This condition may be reflected as altered sensitivity to rewarding stimuli. We examined this hypothesis by testing whether the rewarding properties of morphine are altered in a rat model of neuropathic pain. Neuropathic pain was induced by chronic constriction of the common sciatic nerve. Drug reward was assessed using an unbiased, three-compartment conditioned place preference (CPP) paradigm. The rats underwent two habituation sessions beginning 6 days after surgery. Over the next 8 days, they were injected with drug or vehicle and were confined to one CPP compartment for 30 min. On the following test day, the rats had access to all three compartments for 30 min. Consistent with the literature, systemic administration of morphine dosedependently increased the CPP in pain-naive animals. In rats with neuropathic pain, however, the dose-dependent effects of morphine were in a bell-shaped curve, with a low dose of morphine (2 mg/kg) producing a greater CPP than a higher dose of morphine (8 mg/kg). In a separate group of animals, acute administration of morphine reversed mechanical allodynia in animals with neuropathic pain at the same doses that produced a CPP. The increased potency of systemic morphine to produce a CPP in animals with neuropathic pain suggests that the motivation for opioid-induced reward is different in the two states.
The rewarding effect of opiates is mediated through dissociable neural systems in drug naïve and drug-dependent states. Neuroadaptations associated with chronic drug use are similar to those produced by chronic pain, suggesting that opiate reward could also involve distinct mechanisms in chronic pain and pain-naïve states. We tested this hypothesis by examining the effect of dopamine (DA) antagonism on morphine reward in a rat model of neuropathic pain.Neuropathic pain was induced in male Sprague-Dawley rats through chronic constriction (CCI) of the sciatic nerve; reward was assessed in the conditioned place preference (CPP) paradigm in separate groups at early (4-8 days post-surgery) and late (11-15 days post-surgery) phases of neuropathic pain. Minimal effective doses of morphine that produced a CPP in early and late phases of neuropathic pain were 6 mg/kg and 2 mg/kg respectively. The DA D1 receptor antagonist, SCH23390, blocked a morphine CPP in sham, but not CCI, rats at a higher dose (0.5 mg/kg), but had no effect at a lower dose (0.1 mg/kg). The DA D2 receptor antagonist, eticlopride (0.1 and 0.5 mg/kg), had no effect on a morphine CPP in sham or CCI rats, either in early or late phases of neuropathic pain. In the CPP paradigm, morphine reward involves DA D1 mechanisms in pain-naïve but not chronic pain states. This could reflect increased sensitivity to drug effects in pain versus no pain conditions and/or differential mediation of opiate reward in these two states.
a b s t r a c tUltra-low doses of alpha-2 (a 2 )-adrenoceptor antagonists augment spinal morphine antinociception and inhibit tolerance, but the role of receptor specificity in these actions is unknown. We used the stereo-isomers of the a 2 adrenoceptor antagonist, efaroxan to evaluate the effect of receptor specificity on the induction of spinal morphine tolerance and hyperalgesia. Tail flick and paw pressure tests were first used to evaluate high dose efaroxan (12.6 mg) and its stereo-isomers on clonidine analgesia in intrathecally catheterized rats. Ultra-low doses of individual isomers (1.3 ng) were then coadministered with morphine (15 mg) to determine their effects on acute antinociceptive tolerance and hyperalgesia induced by low dose spinal morphine (0.05 ng). Results demonstrate that high dose ( þ) efaroxan antagonized clonidine-induced antinociception, while ( À ) efaroxan had minimal effect. In addition, an ultra-low dose of (þ ) efaroxan (1.3 ng), substantially lower than required for receptor blockade, inhibited the development of acute morphine tolerance, while ( À ) efaroxan was less effective. Racemic (7 ) efaroxan effects were similar to those of (þ ) efaroxan. Furthermore, low dose morphine (0.05 ng) produced sustained hyperalgesia in the tail flick test and this was blocked by coinjection of ( þ) but not ( À ) efaroxan (1.3 ng). Given the isomer-specific efaroxan effects and their different receptor potencies, we suggest that inhibition of opioid tolerance by ultra-low dose efaroxan involves a specific interaction with spinal a 2 -adrenoceptors in this model. Likewise, inhibitory effects of adrenoceptor antagonists on morphine tolerance may be due to blockade of opioid-induced hyperalgesia.
Delta opioid receptor (DOR) agonists alleviate nociceptive behaviors in various chronic pain models, including neuropathic pain, while having minimal effect on sensory thresholds in the absence of injury. The mechanisms underlying nerve injury-induced enhancement of DOR function are unclear. We used a peripheral nerve injury (PNI) model of neuropathic pain to assess changes in the function and localization of DORs in mice and rats. Intrathecal administration of DOR agonists reversed mechanical allodynia and thermal hyperalgesia. The dose-dependent thermal antinociceptive effects of DOR agonists were shifted to the left in PNI rats. Administration of DOR
Ultra-low doses of non-selective α2-adrenoceptor antagonists augment acute spinal morphine antinociception and block morphine tolerance; however, the receptor involved in mediating these effects is currently unknown. Here, we used tail flick and paw pressure tests on the rat to investigate the acute analgesic and tolerance-inducing effects of spinal morphine and norepinephrine alone or in combination with an ultra-low dose of the α2A-adrenoceptor antagonist, BRL44408. We also assessed the potential antinociceptive effects of BRL44408 alone following spinal administration. A spinal dose of BRL44408, over 1000-fold lower than that required to inhibit clonidine-induced antinociception (1.65ng/10µL), significantly prolonged morphine and norepinephrine action in both nociception tests. Following repeated morphine or norepinephrine injections, 1.65ng BRL44408 attenuated both the decline of antinociceptive effect and increase in morphine ED50 values, responses indicative of acute morphine tolerance. BRL44408 administered alone produced a delayed antinociceptive effect unrelated to repeated nociceptive testing. This response was partially reduced by the α2-adrenoceptor antagonist atipamezole (10µg). Ultra-low dose BRL44408 was able to inhibit the loss of morphine- and norepinephrine-induced antinociceptive response, and prevent the loss of drug potency due to repeated agonist exposure. This implicates the spinal α2A-adrenoceptor subtype in the action of ultra-low dose α2-adrenoceptor antagonists on morphine and norepinephrine tolerance. The BRL44408-induced analgesia is partially dependent on its interaction with the α2-adrenoceptors. Thus, this agent class may be useful in pain therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.