The process of short fatigue crack growth plays a significant role for the lifetime of materials in the high and very high cycle regimes. Fatigue crack growth is strongly influenced by interactions with microstructural obstacles, such as grain boundaries or phase boundaries, requiring a better understanding of these interactions to enhance the lifetime in these load regimes and improve lifetime calculations. Although it is possible to obtain crack growth rates from fatigue cracks in the lower micrometre range, further information like the exact position and type of the obstacle are mostly unavailable during the experiment. To overcome this issue, we propose a testing methodology of fatigue crack growth in micro specimens, which allows for an exact positioning of the crack relative to the obstacles and for monitoring the crack behaviour in a scanning electron microscope. The capabilities of this method are demonstrated for the interaction of fatigue cracks with grain boundaries.
When lubrication of rolling bearings with oil or grease is not possible, for example because the lubricant evaporates in vacuum, solid lubrication by multiwall carbon nanotubes (MWCNT) is a viable alternative. To understand the mechanisms underlying MWCNT lubrication of highly loaded contacts, we combine an experimental approach with large-scale molecular dynamics (MD) simulations. Tribometry is performed on ground iron plates coated with two different types of MWCNTs by electrophoretic deposition. Although structural differences in the MWCNT materials result in slightly different running-in behavior, most of the tests converge to a steady-state coefficient of friction of 0.18. The resulting wear tracks and tribolayers are subjected to structural and chemical characterization and suggest a tribo-induced phase transformation resulting in tribolayers that consist of MWCNT fragments, iron oxide, and iron carbide nanoparticles embedded in an amorphous carbon matrix. Covalent bonding of the tribolayer to the iron surface and low carbon transfer to the alumina counter body indicate sliding at the tribolayer/ball interface as the dominant mechanism underlying MWCNT solid lubrication. MD simulations of nascent a-C tribofilms lubricated by MWCNT bundles and stacks of crossed MWCNTs reveal two different sliding regimes: a low-load regime that leaves the MWCNTs intact and a high-load regime with partial collapse of the tube structure and formation of a-C regions. The critical load for this transition increases with the filling ratio of the MWCNT and the packing density of the stacks. The former determines the stability of the MWCNT, while the latter controls the local stresses at the MWCNT crossings. For both MWCNT materials, the high-load regime is predicted for the experimental loads. This is confirmed by a remarkable agreement between transmission electron microscopy (TEM) and atomistic simulation images. Based on the findings of this work, a multistep lubrication mechanism is formulated for MWCNT coatings rubbing against alumina on an iron substrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.