This article describes our system entry for the 2006 I2B2 contest "Challenges in Natural Language Processing for Clinical Data" for the task of identifying the smoking status of patients. Our system makes the simplifying assumption that patient-level smoking status determination can be achieved by accurately classifying individual sentences from a patient's record. We created our system with reusable text analysis components built on the Unstructured Information Management Architecture and Weka. This reuse of code minimized the development effort related specifically to our smoking status classifier. We report precision, recall, F-score, and 95% exact confidence intervals for each metric. Recasting the classification task for the sentence level and reusing code from other text analysis projects allowed us to quickly build a classification system that performs with a system F-score of 92.64 based on held-out data tests and of 85.57 on the formal evaluation data. Our general medical natural language engine is easily adaptable to a real-world medical informatics application. Some of the limitations as applied to the use-case are negation detection and temporal resolution.
Motivation: The Biological Reference Repository (BioR) is a toolkit for annotating variants. BioR stores public and user-specific annotation sources in indexed JSON-encoded flat files (catalogs). The BioR toolkit provides the functionality to combine and retrieve annotation from these catalogs via the command-line interface. Several catalogs from commonly used annotation sources and instructions for creating user-specific catalogs are provided. Commands from the toolkit can be combined with other UNIX commands for advanced annotation processing. We also provide instructions for the development of custom annotation pipelines.Availability and implementation: The package is implemented in Java and makes use of external tools written in Java and Perl. The toolkit can be executed on Mac OS X 10.5 and above or any Linux distribution. The BioR application, quickstart, and user guide documents and many biological examples are available at http://bioinformaticstools.mayo.edu.Contact: Kocher.JeanPierre@mayo.eduSupplementary information: Supplementary data are available at Bioinformatics online.
Summary: TREAT (Targeted RE-sequencing Annotation Tool) is a tool for facile navigation and mining of the variants from both targeted resequencing and whole exome sequencing. It provides a rich integration of publicly available as well as in-house developed annotations and visualizations for variants, variant-hosting genes and host-gene pathways.Availability and implementation: TREAT is freely available to non-commercial users as either a stand-alone annotation and visualization tool, or as a comprehensive workflow integrating sequencing alignment and variant calling. The executables, instructions and the Amazon Cloud Images of TREAT can be downloaded at the website: http://ndc.mayo.edu/mayo/research/biostat/stand-alone-packages.cfmContact: Hossain.Asif@mayo.edu; Kocher.JeanPierre@mayo.eduSupplementary information: Supplementary data are provided at Bioinformatics online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.