Endothelial nitric oxide synthase (NOS) and neuronal NOS protein increased in proximal tubules of acidotic diabetic rats 3-5 wk after streptozotocin injection. NOS activity (citrulline production) was similar in nondiabetic and diabetic tubules incubated with low glucose (5 mM glucose + 20 mM mannitol); but after 30 min with high glucose (25 mM), Ca-sensitive citrulline production had increased 23% in diabetic tubules. Glucose concentration did not influence citrulline production in nondiabetic tubules. High glucose increased carboxy-2-phenyl-4,4,5,5,-tetramethylimidazoline 1-oxyl-3-oxide (cpt10)-scavenged NO sevenfold in a suspension of diabetic tubules but did not alter NO in nondiabetic tubules. Diabetes increased ouabain-sensitive 86Rb uptake (141 +/- 9 vs. 122 +/- 6 nmol x min(-1) x mg(-1)) and oligomycin-sensitive O2 consumption (QO2; 16.0 +/- 1.7 vs. 11.3 +/- 0.7 nmol x min(-1) x mg(-1)). Ethylisopropyl amiloride-inhibitable QO2 (6.5 +/- 0.6 vs. 2.4 +/- 0.3 nmol x min(-1) x mg(-1)) accounted for increased oligomycin-sensitive QO2 in diabetic tubules. N(G)-monomethyl-L-arginine methyl ester (L-NAME) inhibited most of the increase in 86Rb uptake and QO2 in diabetic tubules. L-NAME had little effect on nondiabetic tubules. Inhibition of QO2 by ethylisopropyl amiloride and L-NAME was only 5-8% additive. Uncontrolled diabetes for 3-5 wk increases NOS protein in proximal tubules and makes NOS activity sensitive to glucose concentration. Under these conditions, NO stimulates Na-K-ATPase and QO2 in proximal tubules.
We examined the effect of endogenous dopamine production on Pi and citrate excretion by Wistar rats. Carbidopa (20-40 mumol/kg ip) decreased dopamine, Pi, and citrate excretion within 20 min (86%, 47%, and 38%, respectively); Pi reabsorption increased 11 +/- 4% (P = 0.03). The decreases were sustained for at least 18 h. 3-Hydroxybenzylhydrazine (45 mumol/kg ip) reduced Pi excretion 24%. Benserazide (40 mumol/kg ip and 0.1 mumol/min iv) reduced dopamine excretion (94%) and blocked the effect of carbidopa on Pi and citrate excretion. In isolated perfused kidneys benserazide, carbidopa, and 3-hydroxybenzylhydrazine all decreased Pi excretion. Dopamine (1 mumol/l) added to cortical minceates reduced brush-border membrane vesicle (BBMV) 32P uptake by 8% (P < 0.02) and amiloride-inhibitable 22Na uptake by 19%. Carbidopa added to minceates increased 32P uptake by 12%. Carbidopa pretreatment increased (75%) amiloride-sensitive 22Na uptake into BBMV of rats fed a high-salt diet. Uptake was not increased into BBMV from rats fed a low-salt diet. Carbidopa increased (17%) basolateral membrane Na(+)-K(+)-adenosinetriphosphatase (Na(+)-K(+)-ATPase) gradually over 4 h. Na(+)-K(+)-ATPase did not increase in rats fed a low-phosphorous diet, but did increase when dopa was added to the diet. Thus endogenous dopamine appears to directly control Na(+)-Pi and Na+/H+ transport and secondarily alter basolateral membrane Na(+)-K(+)-ATPase.
Dopamine's modulatory actions on signal transduction in the spontaneously hypertensive rat (SHR) proximal tubule are blunted; therefore, it was predicted that dopamine does not regulate phosphate (Pi) reabsorption in SHR. To test this hypothesis, dopamine production was inhibited with carbidopa (10 mg/kg ip) 18 h before and during clearance measurements of chronically denervated SHR and Wistar-Kyoto (WKY) rat kidneys. Dopamine excretion decreased 80% from SHR and 85% from WKY rats. Pi excretion decreased 60 to 67%. Plasma Pi and calcium, inulin clearance, and Na excretion did not change. Citrate excretion, which reflects proton secretion by proximal tubules, decreased 72% from WKY rats. Citrate excretion was significantly lower from SHR (5 +/- 10 pmol/min) than from WKY rats (73 +/- 11 pmol/min) and was not altered by carbidopa. Carbidopa, injected 18 and 1 h before kidneys were collected, increased NaK-ATPase in cortical basolateral membranes from WKY rats (27%) but not in membranes from SHR. After the incubation of renal cortical minceates for 15 min with L-DOPA (10(-5) M), there was no change in brush border membrane vesicle uptake of 32Pi, (3H)glucose, or (14C)citrate. Incubation with carbidopa (10(-4) M) increased 32Pi uptake by 11% (P < 0.001) and (3H)glucose uptake by 9% (P = 0.02). (14C)citrate uptake was not increased by carbidopa but was higher in SHR (977 +/- 2 pmol/10 s.mg) than in WKY rats (823 +/- 43 pmol/10 s.mg; P = 0.04). In summary, dopamine produced in WKY rat and SHR proximal tubules decreases Pi uptake by using a signaling process distinct from those that regulate NaK-ATPase and the antiporter.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.