Niche complementarity is a commonly invoked mechanism underlying the positive relationship between biodiversity and ecosystem functioning, but little empirical evidence exists for complementarity among pollinator species. This study related differences in three functional traits of pollinating bees (flower height preference, daily time of flower visitation and within-flower behaviour) to the seed set of the obligate crosspollinated pumpkin Cucurbita moschata Duch. ex Poir. across a land-use intensity gradient from tropical rainforest and agroforests to grassland in Indonesia. Bee richness and abundance changed with habitat variables and we used this natural variation to test whether complementary resource use by the diverse pollinator community enhanced final yield. We found that pollinator diversity, but not abundance, was positively related to seed set of pumpkins. Bees showed species-specific spatial and temporal variation in flower visitation traits and within-flower behaviour, allowing for classification into functional guilds. Diversity of functional groups explained even more of the variance in seed set (r 2 Z45%) than did species richness (r 2 Z32%) highlighting the role of functional complementarity. Even though we do not provide experimental, but rather correlative evidence, we can link spatial and temporal complementarity in highly diverse pollinator communities to pollination success in the field, leading to enhanced crop yield without any managed honeybees.
In this paper, we analyze databases [corrected] on birds and insects to assess patterns of functional diversity in human-dominated landscapes in the tropics. A perspective from developed landscapes is essential for understanding remnant natural ecosystems, because most species experience their surroundings at spatial scales beyond the plot level, and spillover between natural and managed ecosystems is common. Agricultural bird species have greater habitat and diet breadth than forest species. Based on a global data base, bird assemblages in tropical agroforest ecosystems were composed of disproportionately more frugivorous and nectarivorous, but fewer insectivorous bird species compared with forest. Similarly, insect predators of plant-feeding arthropods were more diverse in Ecuadorian agroforest and forest compared with rice and pasture, while, in Indonesia, bee diversity was also higher in forested habitats. Hence, diversity of insectivorous birds and insect predators as well as bee pollinators declined with agricultural transformation. In contrast, with increasing agricultural intensification, avian pollinators and seed dispersers initially increase then decrease in proportion. It is well established that the proximity of agricultural habitats to forests has a strong influence on the functional diversity of agroecosystems. Community similarity is higher among agricultural systems than in natural habitats and higher in simple than in complex landscapes for both birds and insects, so natural communities, low-intensity agriculture, and heterogeneous landscapes appear to be critical in the preservation of beta diversity. We require a better understanding of the relative role of landscape composition and the spatial configuration of landscape elements in affecting spillover of functionally important species across managed and natural habitats. This is important for data-based management of tropical human-dominated landscapes sustaining the capacity of communities to reorganize after disturbance and to ensure ecological functioning.
Due to increasing human modification of tropical landscapes, the relative importance of natural habitats and agricultural systems has become a major conservation topic to counteract global species loss. We investigated the contribution of tropical primary forest, cacao agroforestry systems of varying management practices and openland to the temporal and spatial variation of diversity of native bee communities in the herb layer (Apidae, Hymenoptera) in Sulawesi (Indonesia). Local bee density and diversity were highest in openland, followed by agroforestry systems and were lowest in primary forests, revealing the importance of herbaceous food resources in the understorey. In contrast, highest regional bee richness was found in agroforestry systems, because of high community dissimilarity. Multidimensional scaling supported these findings with openland habitats showing more compactly clustered bee species communities than agroforestry habitats. In conclusion, the herb associated bee community profited from the opening of the landscape as a result of agricultural activities, while agroforestry systems increased bee species richness especially on a regional scale due to high management diversity.
This chapter discusses the role of flower-visiting species richness for crop pollination services. General arguments why flower-visitor species richness can be important for the mutualistic plant partners are described; highlighting the mechanisms that underlie flower-visiting species richness-pollination services relationships. The visualization and quantification of plant-flower visitor interaction webs are demonstrated and linked to crop pollination research. Current knowledge about the consequences of pollinator decline for the global food supply are presented and pollination markets for honey bees and other bee species are discussed using alfalfa as a case study. This chapter shows that conservation and restoration for high species richness is important to provide insurance and stabilise for pollination services interacting with nature in a changing world.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.