Freezing tolerance in plants develops through acclimation to cold by growth at low, above-freezing temperatures. Wheat is one of the most freezing-tolerant plants among major crop species and the wide range of freezing tolerance among wheat cultivars makes it an excellent model for investigation of the genetic basis of cold tolerance. Large numbers of genes are known to have altered levels of expression during the period of cold acclimation and there is keen interest in deciphering the signaling and regulatory pathways that control the changes in gene expression associated with acquired freezing tolerance. A 5740 feature cDNA amplicon microarray that was enriched for signal transduction and regulatory genes was constructed to compare changes in gene expression in a highly cold-tolerant winter wheat cultivar CDC Clair and a less tolerant spring cultivar, Quantum. Changes in gene expression over a time course of 14 days detected over 450 genes that were regulated by cold treatment and were differentially regulated between spring and winter cultivars, of these 130 are signaling or regulatory gene candidates, including: transcription factors, protein kinases, ubiquitin ligases and GTP, RNA and calcium binding proteins. Dynamic changes in transcript levels were seen at all periods of cold acclimation in both cultivars. There was an initial burst of gene activity detectable during the first day of CA, during which 90% of all genes with increases in transcript levels became clearly detectable and early expression differential between the two cultivars became more disparate with each successive period of cold acclimation.
Wheat is the most widely adapted crop to abiotic stresses and considered an excellent system to study stress tolerance in spite of its genetic complexity. Recent studies indicated that several hundred genes are either up- or down-regulated in response to stress treatment. To elucidate the function of some of these genes, an interactome of proteins associated with abiotic stress response and development in wheat was generated using the yeast two-hybrid GAL4 system and specific protein interaction assays. The interactome is comprised of 73 proteins, generating 97 interactions pairs. Twenty-one interactions were confirmed by bimolecular fluorescent complementation in Nicotiana benthamiana. A confidence-scoring system was elaborated to evaluate the significance of the interactions. The main feature of this interactome is that almost all bait proteins along with their interactors were interconnected, creating a spider web-like structure. The interactome revealed also the presence of a "cluster of proteins involved in flowering control" in three- and four-protein interaction loops. This network provides a novel insight into the complex relationships among transcription factors known to play central roles in vernalization, flower initiation and abscisic acid signaling, as well as associations that tie abiotic stress with other regulatory and signaling proteins. This analysis provides useful information in elucidating the molecular mechanism associated with abiotic stress response in plants.
Freezing tolerance in plants is a complex trait that occurs in many plant species during growth at low, nonfreezing temperatures, a process known as cold acclimation. This process is regulated by a multigenic system expressing broad variation in the degree of freezing tolerance among wheat cultivars. Microarray analysis is a powerful and rapid approach to gene discovery. In species such as wheat, for which large scale mutant screening and transgenic studies are not currently practical, genotype comparison by this methodology represents an essential approach to identifying key genes in the acquisition of freezing tolerance. A microarray was constructed with PCR amplified cDNA inserts from 1184 wheat expressed sequence tags (ESTs) that represent 947 genes. Gene expression during cold acclimation was compared in 2 cultivars with marked differences in freezing tolerance. Transcript levels of more than 300 genes were altered by cold. Among these, 65 genes were regulated differently between the 2 cultivars for at least 1 time point. These include genes that encode potential regulatory proteins and proteins that act in plant metabolism, including protein kinases, putative transcription factors, Ca2+ binding proteins, a Golgi localized protein, an inorganic pyrophosphatase, a cell wall associated hydrolase, and proteins involved in photosynthesis.Key words: wheat microarray, expression profile, plant transcription, cold-regulated genes, freezing tolerance, cold acclimation, winter hardiness, stress genes, gene regulation, wheat transcriptome.
MicroRNAs (miRNAs) and the mRNA targets of miRNAs were identified by sequence complementarity within a DNA sequence database for species of the Triticeae. Data screening identified 28 miRNA precursor sequences from 15 miRNA families that contained conserved mature miRNA sequences within predicted stem-loop structures. In addition, the identification of 337 target sequences among Triticeae genes provided further evidence of the existence of 26 miRNA families in the cereals. MicroRNA targets included genes that are homologous to known targets in diverse model species as well as novel targets. MicroRNA precursors and targets were identified in 10 related species, though the great majority of them were identified in bread wheat, Triticum aestivum, and barley, Hordeum vulgare, the two species with the largest EST data sets among the Triticeae.
Homology was searched with genes annotated in the Aegilops tauschii pseudomolecules against genes annotated in the pseudomolecules of tetraploid wild emmer wheat, Brachypodium distachyon, sorghum and rice. Similar searches were performed with genes annotated in the rice pseudomolecules. Matrices of collinear genes and rearrangements in their order were constructed. Optical BioNano genome maps were constructed and used to validate rearrangements unique to the wild emmer and Ae. tauschii genomes. Most common rearrangements were short paracentric inversions and short intrachromosomal translocations. Intrachromosomal translocations outnumbered segmental intrachromosomal duplications. The densities of paracentric inversion lengths were approximated by exponential distributions in all six genomes. Densities of collinear genes along the Ae. tauschii chromosomes were highly correlated with meiotic recombination rates but those of rearrangements were not, suggesting different causes of the erosion of gene collinearity and evolution of major chromosome rearrangements. Frequent rearrangements sharing breakpoints suggested that chromosomes have been rearranged recurrently at some sites. The distal 4 Mb of the short arms of rice chromosomes Os11 and Os12 and corresponding regions in the sorghum, B. distachyon and Triticeae genomes contain clusters of interstitial translocations including from 1 to 7 collinear genes. The rates of acquisition of major rearrangements were greater in the large wild emmer wheat and Ae. tauschii genomes than in the lineage preceding their divergence or in the B. distachyon, rice and sorghum lineages. It is suggested that synergy between large quantities of dynamic transposable elements and annual growth habit have been the primary causes of the fast evolution of the Triticeae genomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.