Our understanding of secondary metabolite production in bacteria has been shaped primarily by studies of attached varieties such as symbionts, pathogens, and soil bacteria. Here we show that a strain of the single-celled, planktonic marine cyanobacterium
Prochlorococcus
—which conducts a sizable fraction of photosynthesis in the oceans—produces many cyclic, lanthionine-containing peptides (lantipeptides). Remarkably, in
Prochlorococcus
MIT9313 a single promiscuous enzyme transforms up to 29 different linear ribosomally synthesized peptides into a library of polycyclic, conformationally constrained products with highly diverse ring topologies. Genes encoding this system are found in variable abundances across the oceans—with a hot spot in a Galapagos hypersaline lagoon—suggesting they play a habitat- and/or community-specific role. The extraordinarily efficient pathway for generating structural diversity enables these cyanobacteria to produce as many secondary metabolites as model antibiotic-producing bacteria, but with much smaller genomes.
Aided by genome-mining strategies, knowledge of the prevalence and diversity of ribosomally synthesized natural products (RNPs) is rapidly increasing. Among these are the lantipeptides, posttranslationally modified peptides containing characteristic thioether cross-links imperative for bioactivity and stability. Though this family was once thought to be a limited class of antimicrobial compounds produced by gram-positive bacteria, new insights have revealed a much larger diversity of activity, structure, biosynthetic machinery, and producing organisms than previously appreciated. Detailed investigation of the enzymes responsible for installing the posttranslational modifications has resulted in improved in vivo and in vitro engineering systems focusing on enhancement of the therapeutic potential of these compounds. Although dozens of new lantipeptides have been isolated in recent years, bioinformatic analyses indicate that many hundreds more await discovery owing to the widespread frequency of lantipeptide biosynthetic machinery in bacterial genomes.
Highlights d CNS-Gipr KO mice are protected from diet-induced obesity and glucose intolerance d Acyl-GIP increases cFOS neuronal activity in key hypothalamic feeding centers d Acyl-GIP effects on body weight and food intake are absent/ blunted in CNS-mGipr KO mice d GLP-1/GIP dual-agonism loses superior potency over GLP-1 in CNS-mGipr KO mice.
Ribosomally synthesized and post-translationally modified
peptides
are a rapidly expanding class of natural products. They are typically
biosynthesized by modification of a C-terminal segment of the precursor
peptide (the core peptide). The precursor peptide also contains an
N-terminal leader peptide that is required to guide the biosynthetic
enzymes. For bioengineering purposes, the leader peptide is beneficial
because it allows promiscuous activity of the biosynthetic enzymes
with respect to modification of the core peptide sequence. However,
the leader peptide also presents drawbacks as it needs to be present
on the core peptide and then removed in a later step. We show that
fusing the leader peptide for the lantibiotic lacticin 481 to its
biosynthetic enzyme LctM allows the protein to act on core peptides
without a leader peptide. We illustrate the use of this methodology
for preparation of improved lacticin 481 analogues containing non-proteinogenic
amino acids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.