A major question in plant physiology is how the large amount of sucrose made in leaves is transported to the rest of the plant. Although physiological, biochemical, and anatomical investigations have been performed in this field, to date there have been very few genetic studies. Using a reverse genetic screen, we have identified mutant Arabidopsis plants containing transferred DNA insertions in the gene encoding a phloem-specific sucrose transporter, SUC2. SUC2 is thought to function in loading sugar from the apoplast into the conducting sieve tubes. In the homozygous state, these mutations resulted in stunted growth, retarded development, and sterility. The source leaves of mutant plants contained a great excess of starch, and radiolabeled sugar failed to be transported efficiently to roots and inflorescences. These data provide genetic proof that apoplastic phloem loading is critical for growth, development, and reproduction in Arabidopsis and that SUC2 is at least partially responsible for this step.
The Arabidopsis (Arabidopsis thaliana) gene MEKK1 encodes a mitogen-activated protein kinase kinase kinase that has been implicated in the activation of the map kinases MPK3 and MPK6 in response to the flagellin elicitor peptide flg22. In this study, analysis of plants carrying T-DNA knockout alleles indicated that MEKK1 is required for flg22-induced activation of MPK4 but not MPK3 or MPK6. Experiments performed using a kinase-impaired version of MEKK1 (K361M) showed that the kinase activity of MEKK1 may not be required for flg22-induced MPK4 activation or for other macroscopic FLS2-mediated responses. MEKK1 may play a structural role in signaling, independent of its protein kinase activity. mekk1 knockout mutants display a severe dwarf phenotype, constitutive callose deposition, and constitutive expression of pathogen response genes. This dwarf phenotype was largely rescued by introduction into mekk1 knockout plants of either the MEKK1 (K361M) construct or a nahG transgene that degrades salicylic acid. When treated with pathogenic bacteria, the K361M plants were slightly more susceptible to an avirulent strain of Pseudomonas syringae and showed a delayed hypersensitive response, suggesting a role for MEKK1 kinase activity in this aspect of plant disease resistance. Our results indicate that MEKK1 acts upstream of MPK4 as a negative regulator of pathogen response pathways, a function that may not require MEKK1's full kinase activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.