Adult stem cells from human bone marrow stroma, referred to as mesenchymal stem cells or marrow stromal cells (hMSCs), are attractive candidates for clinical use. The optimal conditions for hMSC expansion require medium supplemented with fetal calf serum (FCS). Some forms of cell therapy will involve multiple doses, raising a concern over immunological reactions caused by medium-derived FCS proteins. By a sensitive fluorescence-based assay we determined that 7 to 30 mg of FCS proteins are associated with a standard preparation of 100 million hMSCs, a dosage that probably will be needed for clinical therapies. Here we present ex vivo growth conditions for hMSCs that reduce the FCS proteins to less than 100 ng per 100 million hMSCs, approximately a 100,000-fold reduction. The cells maintain their proliferative capacity and sustain their ability for multilineage differentiation. Experiments in rats demonstrate that rat MSCs grown in 20% FCS induce a substantial humoral response after repeated administrations, whereas cells grown under the conditions described in this study reduce the immunogenicity in terms of IgG response over 1000-fold to barely detectable levels. Our results have the potential to dramatically improve cellular and genetic therapies using hMSCs and perhaps other cells.
To investigate stem cell differentiation in response to tissue injury, human mesenchymal stem cells (hMSCs) were cocultured with heatshocked small airway epithelial cells. A subset of the hMSCs rapidly differentiated into epithelium-like cells, and they restored the epithelial monolayer. Immunocytochemistry and microarray analyses demonstrated that the cells expressed many genes characteristic of normal small airway epithelial cells. Some hMSCs differentiated directly after incorporation into the epithelial monolayer but other hMSCs fused with epithelial cells. Surprisingly, cell fusion was a frequent rather than rare event, in that up to 1% of the hMSCs added to the coculture system were recovered as binucleated cells expressing an epithelial surface epitope. Some of the fused cells also underwent nuclear fusion.
Central core disease is a rare, nonprogressive myopathy that is characterized by hypotonia and proximal muscle weakness. In a large Mexican kindred with an unusually severe and highly penetrant form of the disorder, DNA sequencing identified an I4898T mutation in the Cterminal transmembrane͞luminal region of the RyR1 protein that constitutes the skeletal muscle ryanodine receptor. All previously reported RYR1 mutations are located either in the cytoplasmic N terminus or in a central cytoplasmic region of the 5,038-aa protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.