Fourier transform infrared absorption spectroscopy has been used for the determination of CO and CO2 gas concentrations in a high-temperature cell. The gas mixtures analyzed consisted of CO, CO2, and nitrogen; among the samples, the concentration of CO was varied between 0.5 and 4.7% and the CO2 ranged between 0.7 and 4.9%. The temperature of the gas cell was varied between 295 and 1250 K, while the pressure was maintained at atmospheric. Throughout this temperature range, 123 absorption spectra were recorded in the gas cell at a nominal instrument resolution of 0.25 cm−1. The absorption lines used for the concentration analysis consisted of 22 P-branch CO vibrational-rotational lines from the fundamental absorption band, and 19 R-branch CO2 vibrational-rotational lines from the v3 fundamental absorption band. All of the peak heights used for the concentration calculations were first numerically corrected for photometric errors resulting from the finite resolution of the FT-IR instrument. The corrected peak heights were assumed to follow the Bouguer-Lambert law at a constant furnace temperature. Fifty-one of the spectra were used to determine the temperature dependence of the line strength for each of the 41 lines. The experimentally obtained line strengths were then used to determine the gas concentrations of all 123 spectra. The calculated concentrations were compared to NDIR instrument measurements of the gas composition exiting the flow-through high-temperature gas cell. Comparison of the NDIR measured gas concentrations with the calculated concentrations from absorption spectra yielded an average accuracy of 3.6% for the CO spectra and 4.9% for the CO2 spectra.
Fourier transform infrared absorption spectroscopy has been used for the determination of the line strengths of 41 CO and CO2 absorption lines at temperatures between 295 and 1250 K. The CO vibrational-rotational lines were from the P branch of the fundamental absorption band (2150–1950 cm−1) while the CO2 vibrational-rotational lines were from the far wing of the R branch of the v3 fundamental band (2395–2380 cm−1). The intensities of the lines were measured from absorption spectra recorded in a high-temperature gas cell containing known concentrations of CO/CO2/N2 gas mixtures at atmospheric pressure. Absorption spectra were recorded through the cell with the use of a moderate-resolution Fourier transform infrared spectrometer. The absorption spectra were mathematically corrected for distortions resulting from the finite resolution of the spectrometer and for peak overlap. Line strength measurements were made from the corrected peaks by using the Bouguer-Lambert law and assuming a Lorenztian line profile. The experimentally obtained line strengths were evaluated (1) by statistical calculations, (2) by consideration of the validity of the Bouguer-Lambert assumption for these data, (3) by comparison with existing room-temperature and high-temperature data, and (4) by comparison with theoretical calculations. For CO, the statistical analysis suggests that the reported values have an uncertainty of ±10–12%, which is similar to the observed discrepancies with other reported values at room temperature. At high temperatures, the difference between these data and previously reported data and theoretical predictions is less than 10%. For CO2, the statistical uncertainty associated with the line strength calculations is less than 5%, which is also the approximate level of agreement with existing room-temperature data. For lines with m indicies of 65–89, at high temperatures, the values reported in this work agree within 5 to 10% of theoretical calculations.
In situ FT-IR absorption spectroscopy was used as a diagnostic tool to evaluate the gas phase above a heterogeneous reaction, black liquor char combustion. Previously developed calculation methodologies were used to determine the CO and CO2 concentrations and the CO rotational temperatures from absorption spectra. Spectroscopically obtained gas temperatures and concentrations from laboratory-scale experiments were compared to thermocouple and NDIR measurements. Quantitative evaluations of the gas phase during these experiments indicated that gas temperatures can be measured with an accuracy of 2–3% at 450–750 K and gas concentrations can be measured with accuracies of better than 10% at gas concentrations between 0.3 and 1.3%. Gas temperatures obtained during pilot-scale combustion were between 1118 and 1183 K, while concentrations were between 0.35 and 0.76%. Differences among gas concentrations and temperatures calculated from the absorption spectra, compared to NDIR measurements and thermocouples, were greater than those from laboratory combustion due to the dynamics of the gas phase. The need is exemplified for a well-characterized combustion environment for effective use of FT-IR as a diagnostic tool for pilot-scale combustion and for advancing the fundamental understanding of combustion processes.
Fourier transform infrared absorption spectroscopy has been used to determine the rotational temperatures of high-temperature (≤1273 K) CO/N2 gas samples. To achieve this objective, a special gas cell was constructed which permitted the acquisition of absorption spectra of samples containing CO at concentrations of 1–10% by volume in N2 and at temperatures between 295 and 1273 K. The absorption spectra were recorded with the use of a moderate-resolution (0.25 cm−1) FT-IR spectrometer. The rotational temperatures were calculated from the spectra after rigorous correction for photometric errors. Temperatures calculated from the P branch of CO spectra had accuracies of 3.2% or better. In all cases, the calculated temperatures were lower than temperatures recorded with a thermocouple, which had an accuracy of ±0.75%. An important factor in the success of these determinations was the adoption of measures to prevent the modulated spectral emission of the hot gases from reaching the detector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.