Managed aquifer recharge is used to augment groundwater resources and provide resiliency to water supplies threatened by prolonged droughts. It is important that recharge facilities operate at their maximum efficiency to increase the volume of water stored for future use. In this study, we evaluate the use of distributed temperature sensing (DTS) technology as a tool to measure high‐resolution infiltration rates at a large‐scale recharge facility. Fiber optic cable was laid out inside a spreading basin in a spiral pattern, at two different depths. The cables measured the propagation of diurnal surface water temperature oscillations into the basin depth. The rate of heat propagation is proportional to the velocity of the water, making it possible to estimate the infiltration rate from the temperature measurements. Our results showed that the infiltration rate calculated from DTS, averaged over the entire basin, was within 5% of the infiltration rate calculated using a conventional metering method. The high‐resolution data obtained from DTS, both spatially and temporally, revealed heterogeneous infiltration rates throughout the basin; furthermore, tracking the evolution of infiltration rates over time revealed regions with consistently high infiltration rates, regions with consistently low infiltration rates, and regions that evolved from high to low rates, which suggested clogging within that region. Water utilities can take advantage of the high‐resolution information obtained from DTS to better manage recharge basins and make decisions about cleaning schedule, frequency, and extent, leading to improved basin management strategies, reduced O&M costs, and increased groundwater recharge.
The relaxivity of MRI contrast agents can be increased by increasing the size of the contrast agent and by increasing concentration of the bound gadolinium. Large multi-site ligands able to coordinate several metal centres show increased relaxivity as a result. In this paper, an “aza-type Michael” reaction is used to prepare cyclen derivatives that can be attached to organosilicon frameworks via hydrosilylation reactions. A range of organosilicon frameworks were tested including silsesquioxane cages and dimethylsilylbenzene derivatives. Michael donors with strong electron withdrawing groups could be used to alkylate cyclen on three amine centres in a single step. Hydrosilylation successfully attached these to mono-, di-, and tri-dimethylsilyl-substituted benzene derivatives. The europium and gadolinium complexes were formed and studied using luminescence spectroscopy and relaxometry. This showed the complexes to contain two bound water moles per lanthanide centre and T1 relaxation time measurements demonstrated an increase in relaxivity had been achieved, in particular for the trisubstituted scaffold 1,3,5-tris((pentane-sDO3A)dimethylsilyl)benzene-Gd3. This showed a marked increase in the relaxivity (13.1 r1p/mM−1s−1).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.