Summary1. Digital tags were used to describe diving and vocal behaviour of sperm whales during 198 complete and partial foraging dives made by 37 individual sperm whales in the Atlantic Ocean, the Gulf of Mexico and the Ligurian Sea. 2. The maximum depth of dive averaged by individual differed across the three regions and was 985 m (SD = 124·3), 644 m (123·4) and 827 m (60·3), respectively. An average dive cycle consisted of a 45 min (6·3) dive with a 9 min (3·0) surface interval, with no significant differences among regions. On average, whales spent greater than 72% of their time in foraging dive cycles. 3. Whales produced regular clicks for 81% (4·1) of a dive and 64% (14·6) of the descent phase. The occurrence of buzz vocalizations (also called 'creaks') as an indicator of the foraging phase of a dive showed no difference in mean prey capture attempts per dive between regions [18 buzzes/dive (7·6)]. Sperm whales descended a mean of 392 m (144) from the start of regular clicking to the first buzz, which supports the hypothesis that regular clicks function as a long-range biosonar. 4. There were no significant differences in the duration of the foraging phase [28 min (6·0)] or percentage of the dive duration in the foraging phase [62% (7·3)] between the three regions, with an overall average proportion of time spent actively encountering prey during dive cycles of 0·53 (0·05). Whales maintained their time in the foraging phase by decreasing transit time for deeper foraging dives. 5. Similarity in foraging behaviour in the three regions and high diving efficiencies suggest that the success of sperm whales as mesopelagic predators is due in part to long-range echolocation of deep prey patches, efficient locomotion and a large aerobic capacity during diving.
During foraging dives, sperm whales (Physeter macrocephalus) produce long series of regular clicks at 0.5-2 s intervals interspersed with rapid-click buzzes called 'creaks'. Sound, depth and orientation recording Dtags were attached to 23 whales in the Ligurian Sea and Gulf of Mexico to test whether the behaviour of diving sperm whales supports the hypothesis that creaks are produced during prey capture. Sperm whales spent most of their bottom time within one or two depth bands, apparently feeding in vertically stratified prey layers. Creak rates were highest during the bottom phase: 99.8% of creaks were produced in the deepest 50% of dives, 57% in the deepest 15% of dives. Whales swam actively during the bottom phase, producing a mean of 12.5 depth inflections per dive. A mean of 32% of creaks produced during the bottom phase occurred within 10 s of an inflection (13Â more than chance). Sperm whales actively altered their body orientation throughout the bottom phase with significantly increased rates of change during creaks, reflecting increased manoeuvring. Sperm whales increased their bottom foraging time when creak rates were higher. These results all strongly support the hypothesis that creaks are an echolocation signal adapted for foraging, analogous to terminal buzzes in taxonomically diverse echolocating species.
It is obvious, at least qualitatively, that small animals move their locomotory apparatus faster than large animals: small insects move their wings invisibly fast, while large birds flap their wings slowly. However, quantitative observations have been difficult to obtain from free-ranging swimming animals. We surveyed the swimming behaviour of animals ranging from 0.5 kg seabirds to 30 000 kg sperm whales using animalborne accelerometers. Dominant stroke cycle frequencies of swimming specialist seabirds and marine mammals were proportional to mass K0.29 (R 2 Z0.99, nZ17 groups), while propulsive swimming speeds of 1-2 m s K1 were independent of body size. This scaling relationship, obtained from breath-hold divers expected to swim optimally to conserve oxygen, does not agree with recent theoretical predictions for optimal swimming. Seabirds that use their wings for both swimming and flying stroked at a lower frequency than other swimming specialists of the same size, suggesting a morphological trade-off with wing size and stroke frequency representing a compromise. In contrast, foot-propelled diving birds such as shags had similar stroke frequencies as other swimming specialists. These results suggest that muscle characteristics may constrain swimming during cruising travel, with convergence among diving specialists in the proportions and contraction rates of propulsive muscles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.