Folate is a water-soluble B-vitamin and enzymatic cofactor that is necessary for the synthesis of purine and thymidine nucleotides and for the synthesis of methionine from homocysteine. Impairment of folate-mediated one-carbon metabolic pathways can result from B-vitamin deficiencies and/or single nucleotide polymorphisms, and increases risk for pathologies, including cancer and cardiovascular disease, and developmental anomalies including neural tube defects. Although several well validated metabolic and genomic biomarkers for folate deficiency exist, our understanding of the biochemical and genetic mechanisms whereby impaired folate metabolism increases risk for developmental anomalies and disease is limited, as are the mechanisms whereby elevated folate intake protects against these pathologies. Therefore, current initiatives to increase folate intakes in human populations to ameliorate developmental anomalies and prevent disease, while effective, lack predictive value with respect to unintended adverse outcomes.
Folate-dependent one-carbon metabolism is required for the synthesis of purines and thymidylate and for the remethylation of homocysteine to methionine. Methionine is subsequently adenylated to S-adenosylmethionine (SAM), a cofactor that methylates DNA, RNA, proteins, and many metabolites. Previous experimental and theoretical modeling studies have indicated that folate cofactors are limiting for cytoplasmic folate-dependent reactions and that the synthesis of DNA precursors competes with SAM synthesis. Each of these studies concluded that SAM synthesis has a higher metabolic priority than dTMP synthesis. The influence of cytoplasmic serine hydroxymethyltransferase (cSHMT) on this competition was examined in MCF-7 cells. Increases in cSHMT expression inhibit SAM concentrations by two proposed mechanisms: (1) cSHMT-catalyzed serine synthesis competes with the enzyme methylenetetrahydrofolate reductase for methylenetetrahydrofolate in a glycine-dependent manner, and (2) cSHMT, a high affinity 5-methyltetrahydrofolate-binding protein, sequesters this cofactor and inhibits methionine synthesis in a glycine-independent manner. Stable isotope tracer studies indicate that cSHMT plays an important role in mediating the flux of one-carbon units between dTMP and SAM syntheses. We conclude that cSHMT has three important functions in the cytoplasm: (1) it preferentially supplies one-carbon units for thymidylate biosynthesis, (2) it depletes methylenetetrahydrofolate pools for SAM synthesis by synthesizing serine, and (3) it sequesters 5-methyltetrahydrofolate and inhibits SAM synthesis. These results indicate that cSHMT is a metabolic switch that, when activated, gives dTMP synthesis higher metabolic priority than SAM synthesis.
Folate catabolism has been assumed to result from the nonenzymatic oxidative degradation of labile folate cofactors. Increased rates of folate catabolism and simultaneous folate deficiency occur in several physiological states, including pregnancy, cancer, and when anticonvulsant drugs are used. These studies have introduced the possibility that folate catabolism may be a regulated cellular process that influences intracellular folate concentrations. Recent studies have demonstrated that the iron storage protein ferritin can catabolize folate in vitro and in vivo, and increased heavy-chain ferritin synthesis decreases intracellular folate concentrations independent of exogenous folate levels in cell culture models. Ferritin levels are elevated in most physiological states associated with increased folate catabolism. Therefore, folate catabolism is emerging as an important component in the regulation of intracellular folate concentrations and whole-body folate status.
The three enzymes that constitute the de novo thymidylate synthesis pathway in mammals, cytoplasmic serine hydroxymethyltransferase (SHMT1), thymidylate synthase (TYMS) and dihydrofolate reductase (DHFR) undergo sumoylation and nuclear import during S-phase. In this study, we demonstrate that purified intact mouse liver nuclei convert dUMP to dTMP in the presence of NADPH and serine. Neither nuclear extracts nor intact nuclei exposed to aminomethylphosphonate, a SHMT inhibitor, exhibit thymidylate synthesis activity. Nuclei isolated from Shmt1−/− mouse livers retained 25% of thymidylate synthesis activity exhibited by nuclei isolated from wild type mice. This residual activity was due to the presence of a cytoplasmic/nuclear isozyme of SHMT encoded by Shmt2. Shmt2 is shown to encode two transcripts, one which encodes a protein that localizes exclusively to the mitochondria (SHMT2), and a second transcript that lacks exon 1 and encodes a protein that localizes to the cytoplasm and nucleus during S-phase (SHMT2α). The ability of Shmt2 to encode a cytoplasmic isozyme of SHMT may account for the viability of Shmt1−/− mice and provide redundancy that permitted the expansion of the human SHMT1 L474F polymorphism that impairs SHMT1 sumoylation and nuclear translocation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.