Maintenance of a high degree of biodiversity in homogeneous environments is poorly understood. A complex cheese starter culture with a long history of use was characterized as a model system to study simple microbial communities. Eight distinct genetic lineages were identified, encompassing two species: Lactococcus lactis and Leuconostoc mesenteroides. The genetic lineages were found to be collections of strains with variable plasmid content and phage sensitivities. Kill-the-winner hypothesis explaining the suppression of the fittest strains by density-dependent phage predation was operational at the strain level. This prevents the eradication of entire genetic lineages from the community during propagation regimes (back-slopping), stabilizing the genetic heterogeneity in the starter culture against environmental uncertainty.
The physical properties of digesta may influence mixing, efficiency of digestion, and absorption within the lumen of the intestine. We review how the physical properties of digesta change during transit through the various segments of the intestine, and how their influence on flow and mixing may be modulated by peristaltic activity. We examine how, in more fluid digesta, the solid and liquid phases interact to influence flow and mixing. Similarly, how in viscid digesta, shear strength, plasticity and elasticity of contained particulate material may influence the permeation of the fluid phase and secretions into and out of the digesta bolus. The manner in which the solid and liquid phases of digesta interact in a partly gaseous environment, such as the lower bowel, to influence bolus cohesion is also examined. Those mechanisms that promote the formation of a less viscous layer at the mucosal interface to promote plug flow are reviewed, and their effect on the efficiency of mixing and digestion discussed. It is recommended that in any future work investigating the character of mixing in the intestine, a wider range of appropriate digesta properties be measured and that, in investigations of intestinal movement, perfusates with similar characteristics to digesta be used.
Many food fermentations are performed using mixed cultures of lactic acid bacteria. Interactions between strains are of key importance for the performance of these fermentations. Yogurt fermentation by Streptococcus thermophilus and Lactobacillus bulgaricus (basonym, Lactobacillus delbrueckii subsp. bulgaricus) is one of the best-described mixed-culture fermentations. These species are believed to stimulate each other's growth by the exchange of metabolites such as folic acid and carbon dioxide. Recently, postgenomic studies revealed that an upregulation of biosynthesis pathways for nucleotides and sulfur-containing amino acids is part of the global physiological response to mixed-culture growth in S. thermophilus, but an in-depth molecular analysis of mixed-culture growth of both strains remains to be established. We report here the application of mixedculture transcriptome profiling and a systematic analysis of the effect of interaction-related compounds on growth, which allowed us to unravel the molecular responses associated with batch mixed-culture growth in milk of S. thermophilus CNRZ1066 and L. bulgaricus ATCC BAA-365. The results indicate that interactions between these bacteria are primarily related to purine, amino acid, and long-chain fatty acid metabolism. The results support a model in which formic acid, folic acid, and fatty acids are provided by S. thermophilus. Proteolysis by L. bulgaricus supplies both strains with amino acids but is insufficient to meet the biosynthetic demands for sulfur and branched-chain amino acids, as becomes clear from the upregulation of genes associated with these amino acids in mixed culture. Moreover, genes involved in iron uptake in S. thermophilus are affected by mixed-culture growth, and genes coding for exopolysaccharide production were upregulated in both organisms in mixed culture compared to monocultures. The confirmation of previously identified responses in S. thermophilus using a different strain combination demonstrates their generic value. In addition, the postgenomic analysis of the responses of L. bulgaricus to mixed-culture growth allows a deeper understanding of the ecology and interactions of this important industrial food fermentation process.Fermented dairy products are typically produced using mixed cultures of lactic acid bacteria, a prominent group of Gram-positive bacteria. Yogurt is milk fermented by the lactic acid bacteria Streptococcus thermophilus and Lactobacillus bulgaricus (basonym, Lactobacillus delbrueckii subsp. bulgaricus). These bacteria stimulate each other's growth and acid production. This mutual stimulation is based on the exchange of growth enhancing metabolites (for a recent review, see reference 30). S. thermophilus is suggested to provide L. bulgaricus with formic acid (12), folic acid (10, 36), and carbon dioxide (14), compounds that are all associated with purine biosynthesis either as precursors or as cofactors. Other metabolic interactions exist at the level of nitrogen metabolism. Typically, the nonproteolytic S. therm...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.