The voltage-gated potassium channel, Kv1.3, contributes a large proportion of the current in mitral cell neurons of the olfactory bulb where it assists to time the firing patterns of action potentials as spike clusters that are important for odorant detection. Gene-targeted deletion of the Kv1.3 channel, produces a “super-smeller” phenotype, whereby mice are additionally resistant to diet- and genetically-induced obesity. As assessed via an electrophysiological slice preparation of the olfactory bulb, Kv1.3 is modulated via energetically important molecules – such as insulin and glucose – contributing to the body’s metabolic response to fat intake. We discuss a biophysical characterization of modulated synaptic communication in the slice following acute glucose and insulin stimulation, chronic elevation of insulin in mice that are in a conscious state, and induction of diet-induced obesity. We have discovered that Kv1.3 contributes an unusual nonconducting role – the detection of metabolic state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.