BackgroundInteractions between wildlife and humans are increasing. Urban animals are often less wary of humans than their non-urban counterparts, which could be explained by habituation, adaptation or local site selection. Under local site selection, individuals that are less tolerant of humans are less likely to settle in urban areas. However, there is little evidence for such temperament-based site selection, and even less is known about its underlying genetic basis. We tested whether site selection in urban and non-urban habitats by black swans (Cygnus atratus) was associated with polymorphisms in two genes linked to fear in animals, the dopamine receptor D4 (DRD4) and serotonin transporter (SERT) genes.ResultsWariness in swans was highly repeatable between disturbance events (repeatability = 0.61) and non-urban swans initiated escape from humans earlier than urban swans. We found no inter-individual variation in the SERT gene, but identified five DRD4 genotypes and an association between DRD4 genotype and wariness. Individuals possessing the most common DRD4 genotype were less wary than individuals possessing rarer genotypes. As predicted by the local site selection hypothesis, genotypes associated with wary behaviour were over three times more frequent at the non-urban site. This resulted in moderate population differentiation at DRD4 (FST = 0.080), despite the sites being separated by only 30 km, a short distance for this highly-mobile species. Low population differentiation at neutrally-selected microsatellite loci and the likely occasional migration of swans between the populations reduces the likelihood of local site adaptations.ConclusionOur results suggest that wariness in swans is partly genetically-determined and that wary swans settle in less-disturbed areas. More generally, our findings suggest that site-specific management strategies may be necessary that consider the temperament of local animals.
One way to manage disturbance to waterbirds in natural areas where humans require access is to promote the occurrence of stimuli for which birds tolerate closer approaches, and so cause fewer responses. We conducted 730 experimental approaches to 39 species of waterbird, using five stimulus types (single walker, three walkers, bicycle, car and bus) selected to mimic different human management options available for a controlled access, Ramsar-listed wetland. Across species, where differences existed (56% of 25 cases), motor vehicles always evoked shorter flight-initiation distances (FID) than humans on foot. The influence of stimulus type on FID varied across four species for which enough data were available for complete cross-stimulus analysis. All four varied FID in relation to stimuli, differing in 4 to 7 of 10 possible comparisons. Where differences occurred, the effect size was generally modest, suggesting that managing stimulus type (e.g. by requiring people to use vehicles) may have species-specific, modest benefits, at least for the waterbirds we studied. However, different stimulus types have different capacities to reduce the frequency of disturbance (i.e. by carrying more people) and vary in their capacity to travel around important habitat.
Learning differences predicted from ecological variables can be confounded with differences in wariness of novel stimuli (neophobia). Previous work on feral pigeons (Columba livia), as well as on group‐feeding and territorial zenaida doves (Zenaida aurita), reported individual and social learning differences predicted from social foraging mode. In the present study, we show that speed of learning a foraging task covaries with neophobia and latency to feed from a familiar dish in the three types of columbids. Pigeons were much faster than either territorial or group‐feeding zenaida doves on all tests conducted in captivity, but showed unexpectedly strong neophobia in some urban flocks during field tests. Human proximity strongly affected performance in group‐feeding doves both in the field and in captivity. They were slightly faster at learning than their territorial conspecifics in cage tests. In multiple regressions, species identity, but not social foraging mode, significantly predicted individual variation in learning, as did individual variation in neophobia. Wariness of novel stimuli and species differences associated with artificial selection appear to be more important than foraging mode and wariness of humans in accounting for learning differences between these columbids.
In many animals, response to predators occurs at greater distances the further an individual is from a refuge, but this has rarely been investigated in birds. Here, we test the hypothesis that the further from refuge (i.e. water) a foraging black swan Cygnus atratus is situated, the longer its flight initiation distance (FID) in response to a pedestrian approach on land. As predicted, swans situated farther from water exhibited longer FIDs compared with those closer to the shore. In addition, there was the possibility of an interesting interaction effect (p < 0.061) of sex and direction of approach on FID. Whilst males tended to not alter their response in relation to the angle of approach relative to the water, females tended to respond at longer distances, when approached from the shore than when approached from the land or parallel to the shore. This is one of the first reports of sex differences in FIDs for birds, with sex differences only manifesting themselves under certain approach types. Group size, the order of repeated approaches, and time of day did not influence responses, although starting distance of approach was positively related to FID.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.