Methionine restriction (MetR) extends lifespan across different species and exerts beneficial effects on metabolic health and inflammatory responses. In contrast, certain cancer cells exhibit methionine auxotrophy that can be exploited for therapeutic treatment, as decreasing dietary methionine selectively suppresses tumor growth. Thus, MetR represents an intervention that can extend lifespan with a complementary effect of delaying tumor growth. Beyond its function in protein synthesis, methionine feeds into complex metabolic pathways including the methionine cycle, the transsulfuration pathway, and polyamine biosynthesis. Manipulation of each of these branches extends lifespan; however, the interplay between MetR and these branches during regulation of lifespan is not well understood. In addition, a potential mechanism linking the activity of methionine metabolism and lifespan is regulation of production of the methyl donor S‐adenosylmethionine, which, after transferring its methyl group, is converted to S‐adenosylhomocysteine. Methylation regulates a wide range of processes, including those thought to be responsible for lifespan extension by MetR. Although the exact mechanisms of lifespan extension by MetR or methionine metabolism reprogramming are unknown, it may act via reducing the rate of translation, modifying gene expression, inducing a hormetic response, modulating autophagy, or inducing mitochondrial function, antioxidant defense, or other metabolic processes. Here, we review the mechanisms of lifespan extension by MetR and different branches of methionine metabolism in different species and the potential for exploiting the regulation of methyltransferases to delay aging.
DUSP6/MKP-3 is a cytoplasmic dual-specificity phosphatase specific for the MAP kinases ERK1/2. Previous data have shown that the MEK/ERK axis exerts a retro-control on its own signaling through transcriptional and post-translational regulation of DUSP6. We first confirm the key role of MEK/ERK in maintaining the levels of dusp6 mRNA, while PI3K/mTOR, p38 MAPK, and JNK signaling pathways had no significant effects. We further show that regulation of dusp6 mRNA stability plays a critical role in ERK-dependent regulation of dusp6 expression. Luciferase reporter constructs indicated that MEK/ERK signaling increased the half-life of dusp6 mRNA in a 3'untranslated region (3'UTR)-dependent manner. In addition, hypoxia, a hallmark of tumor growth, was found to increase both endogenous levels of dusp6 mRNA and the stability of the luciferase reporter constructs containing its 3'UTR, in a HIF-1-dependent manner. Nevertheless, a basal ERK activity was required for the response to hypoxia. Finally, Tristetraprolin (TTP), a member of the TIS11 CCCH zinc finger protein family, and PUM2, an homolog of drosophila pumilio, two proteins regulating mRNA stability reduced the levels of endogenous dusp6 mRNA and the activity of the dusp6/3'UTR luciferase reporter constructs. This study shows that post-transcriptional regulation is a key process in the control of DUSP6 expression.
Adaptation to nutrient scarcity involves an orchestrated response of metabolic and signaling pathways to maintain homeostasis. We find that in the fat body of fasting Drosophila , lysosomal export of cystine coordinates remobilization of internal nutrient stores with reactivation of the growth regulator target of rapamycin complex 1 (TORC1). Mechanistically, cystine was reduced to cysteine and metabolized to acetyl-coenzyme A (acetyl-CoA) by promoting CoA metabolism. In turn, acetyl-CoA retained carbons from alternative amino acids in the form of tricarboxylic acid cycle intermediates and restricted the availability of building blocks required for growth. This process limited TORC1 reactivation to maintain autophagy and allowed animals to cope with starvation periods. We propose that cysteine metabolism mediates a communication between lysosomes and mitochondria, highlighting how changes in diet divert the fate of an amino acid into a growth suppressive program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.