In photopolymerization reactions, mostly multifunctional monomers are employed, as they ensure fast reaction times and good final mechanical properties of the cured materials. Drawing conclusions about the influence of the components and curing conditions on the mechanical properties of the subsequently formed insoluble networks is challenging. Therefore, an in situ observation of chemical and mechanical characteristics during the photopolymerization reaction is desired. By coupling of an infrared spectrometer with a photorheometer, a broad spectrum of different photopolymerizable formulations can be analyzed during the curing reaction. The rheological information (i.e., time to gelation, final modulus, shrinkage force) can be derived from a parallel plate rheometer equipped with a UV- and IR-translucent window (glass for NIR and CaF window for MIR). Chemical information (i.e., conversion at the gel point and final conversion) is gained by monitoring the decrease of the corresponding IR-peak for the reactive monomer unit (e.g., C═C double bond peak for (meth)acrylates, H-S thiol and C═C double bond peak in thiol-ene systems, C-O epoxy peak for epoxy resins). Depending on the relative concentration of reactive functional groups in the sample volume and the intensity of the IR signal, the conversion can be monitored in the near-infrared region (e.g., acrylate double bonds, epoxy groups) or the MIR region (e.g., thiol signal). Moreover, an integrated Peltier element and external heating hood enable the characterization of photopolymerization reactions at elevated temperatures, which also widens the window of application to resins that are waxy or solid at ambient conditions. By switching from water to heavy water, the chemical conversion during photopolymerization of hydrogel precursor formulations can also be examined. Moreover, this device could also represent an analytical tool for a variety of thermally and redox initiated systems.
Thermal bulk curing of epoxy resins is a non-energy efficient method. On the other hand classical photocuring techniques for epoxy resins are limited to quite thin layers, due to the limited penetration depth of UV-light. We show that Radical Induced Cationic Frontal Polymerization (RICFP) is a promising technique for the energy efficient bulk curing of epoxy resins. The combination of a C-C labile compound (1,1,2,2tetraphenylethanediol) as a thermal radical initiator with diaryliodonium salts results upon local thermalor photoinitiation in a self-sustaining front moving along the formulation and curing cationically curable resins completely. This allows the curing of monomer formulations in places that are not easily accessible or on objects that cannot be thermally cured because of their thermal instability or size. In this paper we report about first basic investigations on RICFP of several epoxy resins with C-C-labile compounds and compare them to common thermal radical initiators. Fig. 1 Structure of the bisphenol A diglycidylether resin (BADGE). † Electronic supplementary information (ESI) available. See
Novel cationic photoinitiators based on the non-nucleophilic [Al(OC(CF3)3)4]− anion were prepared and their high efficiency was presented in comparison to benchmark systems.
Vinyl sulfone esters are described as a new class of AFCT reagents for methacrylate-based photopolymerization without the drawback of retardation but good regulation of network architecture. Resulting materials show low shrinkage stress and increased toughness. This paves the way for vinyl sulfone esters in lithography-based 3D printing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.