An investigation of the interaction between the in-cylinder flow and the spray topology in two spray-guided direct injection optical engines is reported. The bulk flow field in the combustion chamber is characterized using particle image velocimetry. Geometrical parameters such as the axial penetration and the spray angle of the liquid spray are measured using Mie scatter imaging and/or diffuse back-illumination. The measured parameters are compared with data from a constant volume chamber available in the literature. For a late injection strategy, the so-called ECN Spray G standard condition, the mean values of the spray penetration do not seem to be significantly perturbed by the in-cylinder flow motion until the plumes approach the piston surface. However, spray probability maps reveal that cycle-to-cycle fluctuations of the spatial distribution of the liquid spray are affected by the magnitude of the in-cylinder flow. Particle image velocimetry during injection shows that the flow field in the vicinity of the spray plumes is heavily influenced by air entrainment, and that an upward flow in-between spray plumes develops. Consistent with previous research that demonstrated the importance of the latter flow structure for the prevention of spray collapse, it is found that increased in-cylinder flow magnitudes due to increased intake valve lifts or engine speeds enhance the spray-shape stability. Compared with cases without injection, the influence of the spray on the in-cylinder flow field is still noticeable approximately 2.5 ms after the start of injection.
The aim of this work is to evaluate thermal behaviors and develop a soft sensor for online prediction of LOD (loss-on-drying) in the segmented fluidized bed dryer (Seg-FBD) in the ConsiGma25 line, which is regarded as the intermediate critical quality attribute for the final drug product. Preheating and drying experiments are performed and heat transfers and conductions among the Seg-FBD are evaluated based on the temperature measurements from sensors and an infrared thermal camera. A temperature distribution in dryer cells and high heat conductions in walls are found. Considerable heat transfers between the neighboring dryer cells are determined, which equal approximately 7% of the energy provided from the heated air. The cell-to-cell heat transfers are implemented into the heat transfer and drying models of the Seg-FBD. The models are calibrated successively in gPROMS Formulated Products (gFP) and the temperature and LOD errors are less than 2 °C and 0.5 wt.%, respectively. Subsequently, a soft sensor is established by combining data sources, a real-time data communication method, and the developed drying model, and it shows the capability of predicting real-time LOD, where the error of end-point LOD is within 0.5 wt.%. The work provides detailed steps and applicable tools for developing a soft sensor, and the online deployment of the soft sensor could support continuous production in the Seg-FBD by enabling visualization of process status and determination of process end point.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.