Capsule Networks (CapsNets) excel on simple image recognition problems. However, they fail to perform on complex images with high similarity and background objects. This paper proposes Local Binary Pattern (LBP) k-means routing and evaluates its performance on three publicly available plant disease datasets containing images with high similarity and background objects. The proposed routing algorithm adopts the squared Euclidean distance, sigmoid function, and a ‘simple-squash’ in place of dot product, SoftMax normalizer, and the squashing function found respectively in the dynamic routing algorithm. Extensive experiments conducted on the three datasets showed that the proposed model achieves consistent improvement in test accuracy across the three datasets as well as allowing an increase in the number of routing iterations with no performance degradation. The proposed model outperformed a baseline CapsNet by 8.37% on the tomato dataset with an overall test accuracy of 98.80%, comparable to state-of-the-art models on the same datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.